US 20110112784A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2011/0112784 Al

Nikitin 43) Pub. Date: May 12, 2011
(54) METHOD AND APPARATUS FOR ADAPTIVE (52) US.Cl .ot 702/70
REAL-TIME SIGNAL CONDITIONING AND
ANALYSIS 57 ABSTRACT
] . s The present invention constitutes a method, processes, and
(76)  Inventor: %eéxel V. Nikitin, Lawrence, K3 apparatus for measurement and analysis of variables of dif-
Us) ferent type and origin. In particular, the invention presents a
1) Appl. No: 12/927.149 metlhod andhapparatus fo; real-tlime signal conditii?ing and
U ’ analysis in the presense of impulsive, or sparse interferences.
o The present invention overcomes limitations of the prior art
(22) Filed: Nov.8,2010 by providing a novel method for identifying and discriminat-
S ing between, in real time, the conditions of the signal with and
Related U.S. Application Data ng N o . .
without impulsive disturbances. This method can be imple-
(60) Provisional application No. 61/280,821, filed on Now. mented without substantial changes in the signal processing
9, 2009, provisional application No. 61/280,833, filed chain of a communication or data acquisition system.
on Nov. 9, 2009, provisional application No. 61/399, Th ” tional the shortcomi fih
040, filed on Jul. 6, 2010, provisional application No. \e presentinventionaiso overcomes the shorteomings o the
61/455.481. filed on Oct. 21. 2010 prior art through the introduction of the novel SPART filters,
T B ’ which can replace the corresponding analog linear filters in
A . . the signal chain of a device. SPART filters have the ability to
Publication Classification sense and discriminate between, in real time, the conditions
(51) Int.CL of the signal with and without impulsive disturbances, and
GOIR 29/00 (2006.01) temporarily adjust their behavior in a manner which reduces
GO6F 19/00 (2011.01) the power of these disturbances.
FrankenSPART S(q, g, T)
P T T T T T T I I T T m T e T e ey
i I
L :
b= tx(t)=§ T)z(t
() ! COMPARATOR @) INTEGRATOR i x(t) = 8lg,7)al l
— B o) - x(®) \T/ Jat - g
|
i
'
1
]
[}

-



Patent Application Publication

May 12, 2011 Sheet 1 of 47

FrankenSPART S(q, p, 7)

COMPARATOR

R j':u‘r [z(t) - X(t)l

INTEGRATOR
f dt -

US 2011/0112784 A1l

x(t) = 8g, p, 1) 2(t)

Py

- - - e - e e e e e e e o -

C



Patent Application Publication = May 12, 2011 Sheet 2 of 47 US 2011/0112784 A1

3

sl by slew s

e

324345

i




Patent Application Publication = May 12, 2011 Sheet 3 of 47 US 2011/0112784 A1

i e 1

T A S S it s e




Patent Application Publication = May 12, 2011 Sheet 4 of 47 US 2011/0112784 A1

|
|
I
I
|
|
I
: "8 ¥ i

: . : ........................................

110 Mbit/s modulation e ,

H . i

i [ gain |

! 1.2GHz P 1GHz 70dB !

| i \t S !

. i

1.2 GHz transmitter |! @ W > |

e ] U = . 2.5 ps ,

I 1] :

H

H

i



Patent Application Publication = May 12, 2011 Sheet 5 of 47 US 2011/0112784 A1

‘-’:.' { ““)ﬂ&({‘ f.gﬁkj VTMJ%\ “’I :~-: \ \f.".’"‘..« £
e AL ASND AT, O

;a,,,fx:‘n, ALOBATTTU TS

N 17O L W A T ARV G TR T

B

RS 5 5

RAWA VAN AT Vet VG VAV, 0
e PBRLSLADL AT

Tushuyd receibvey

".- f’w“-’.% {"%1 }§

"-/"-.




Patent Application Publication = May 12, 2011 Sheet 6 of 47 US 2011/0112784 A1

LSTAOWY &mgfff*’“@ﬁwﬁv

Fry§ % .Cq. #
.,j: ’sf kgﬁ"j#‘(. i .'.:-f




Patent Application Publication = May 12, 2011 Sheet 7 of 47 US 2011/0112784 A1

o P 2% Py e oy '\w"

j’&sﬁwﬂ‘a AT &(‘J :.v;a{& H i
A B T ot B i
MU A AN AU 0

o e

Caey

AT K e A T et e
et

et
e T N Y

i

i

ety -."

Fas
f.-"? ' v:r'-j §

PR MY Ny

N % A8

it




Patent Application Publication = May 12, 2011 Sheet 8 of 47 US 2011/0112784 A1

W et e T . = A A A e e W e . -y

i RC=r !
o | L(rla,7) 2(t)
7 S (Gr s 7) - ; >
: 1= G{Dyy4(t) — Dyya(t)}/7 :
' 1
1 D-; 4 t !
: . 3/ ( ) £ :
| 1
: Dy y4(t) _ G :
! i
! i

M m m mm d m —  E  Em Am am  AR e e —  —  — ———



Patent Application Publication = May 12, 2011 Sheet 9 of 47 US 2011/0112784 A1

AR

w

& A




Patent Application Publication = May 12, 2011 Sheet 10 of 47 US 2011/0112784 A1

Periodogram of IF signal without noise (black line) and output of linear filter (gray line)

10 1 T T i T T T T i
g o 1
> i
Rt
z
Z -10F .
e
b
£
g -20H 2
& f\ﬂ AR
_30L /\f\‘L ] i 1 i 1 1 f\ {(B\__i_
75 80 85 S0 95 100 105 110 1185 120 125
Periodogram of IF signal without noise (black line) and cutput of filter L (7|}, 7) (gray line)
10 _* ! ! ! 9 ; ; ! !
g@/ ok . . T SR g L oy SRR .
> : ; | : r z : :
= : : : ; : : :
= P | N | I & U | NER 1 PN | (U 2 UV | U AU | RO B | EE PR -
O X : ! . . .
© : : A : G :
5 : 1 [ f ¥ ;
& : . : :
a L - z . ; »
R AVAVAVARAAIVY NN
85 a0 95 100 106 110 1186 120 125

frequency (MHz)

Fig. 10



Patent Application Publication = May 12, 2011 Sheet 11 of 47 US 2011/0112784 A1

M = M(r|n, T)

. — -~ - -

M(r|a, T) z(t)

N {
| i
; |

z(t) x(t) s !
: ‘5(%9",7) ‘S(%’””T) T ; >
" 1
X 1
: T put = GlDyya(t) — Dyya(t)) T :
X . 1
E Dayalt) I i
| 1
E Dhya(?) G i
! p :
\ i
" 1
| 1

D e et e T e N . e ——



Patent Application Publication = May 12, 2011 Sheet 12 of 47 US 2011/0112784 A1




Patent Application Publication = May 12, 2011 Sheet 13 of 47 US 2011/0112784 A1

Periodogram of IF signal without noise (black line) and output of linear filter (gray line)
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Discrete white Gaussian sparse noise (52 = 10)
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Band-limited continuous Band-limited continuous
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Peakedness vs. bandwidth for Gaussian noises of initial sparsities 10 and 100
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Peakedness of total power response in dBc of excess-to-average power
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METHOD AND APPARATUS FOR ADAPTIVE
REAL-TIME SIGNAL CONDITIONING AND
ANALYSIS

CROSS REFERENCES TO RELATED
APPLICATIONS

[0001] This application claims the benefit of the U.S. Pro-
visional Patent Application Nos. 61/280,821 filed on Nov. 9,
2010, No. 61/280,833 filed on Nov. 9, 2010, No. 61/399,040
filed on Jul. 6,2010, and Atty. Docket No. Nikitin 1005P filed
on Oct. 21, 2010, which are incorporated herein by reference
in their entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] None.

COPYRIGHT NOTIFICATION

[0003] Portions of this patent application contain materials
that are subject to copy-right protection. The copyright owner
has no objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

TECHNICAL FIELD

[0004] The present invention relates to methods, processes
and apparatus for real-time measuring and analysis of vari-
ables. In particular, it relates to adaptive real-time signal
conditioning, processing, analysis, quantification, compari-
son, and control. This invention also relates to generic mea-
surement systems and processes, that is, the proposed mea-
suring arrangements are not specially adapted for any specific
variables, or to one particular environment. This invention
also relates to methods and corresponding apparatus for mea-
suring which extend to different applications and provide
results other than instantaneous values of variables. The
invention further relates to post-processing analysis of mea-
sured variables and to statistical analysis.

BACKGROUND OF THE INVENTION

[0005] Signals of interest in various data acquisition and
processing devices are always affected by various interfer-
ences (noise) from natural and man-made sources. Be it a
signal from a sensor, or a signal from a transmitter in a
communication chain, the amount of noise affecting the sig-
nal needs to be reduced in order to improve the signal quality.
[0006] Since a signal of interest typically occupies a difter-
ent and/or narrower frequency range than the noise, linear
filters are applied to the incoming mixture of the signal and
the noise in order to reduce the frequency range of the mixture
to that of'the signal. This reduces the power of the interference
to a fraction of the total, limited to the frequency range of the
signal.

[0007] However, the noise having the same frequency
power spectrum can have various peakedness, and be impul-
sive or non-impulsive. For example, white shot noise is much
more impulsive than white thermal noise, while both have
identically flat power spectra. Linear filtering in the fre-
quency domain does not discriminate between impulsive and
non-impulsive noise contributions, and does not allow miti-
gation of the impulsive noise relative to the non-impulsive. In
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addition, reduction in the bandwidth of an initially impulsive
noise by linear filtering makes the noise less impulsive,
decreasing the ability to separate the signal from the noise
based on their peakedness.

[0008] Effective suppression of impulsive interferences
typically requires nonlinear means, for example, processing
based on order statistics. These means can be employed either
through digital signal processing, or in the analog signal
chain. The nonlinear filters in the analog signal chain can
range from simple slew rate limiting filters to more sophisti-
cated analog rank filters described, for example, in U.S. Pat.
Nos. 7,133,568 and 7,242,808, referenced as (Nikitin and
Davidchack, 2006 and 2007), and U.S. Pat. Nos. 7,107,306,
7,418,469, and 7,617,270, referenced as (Nikitin, 2006, 2008,
and 2009).

[0009] However, the practical use of nonlinear filters is
limited as it typically results in complicated design consider-
ations and in multiple detrimental effects on normal signal
flow. These filters cause various nonlinear distortions and
excessive attenuation of the signal, and their effect on the
useful signal components is typically unpredictable and
depends on the type and magnitude of the interfering signal.
[0010] A particular example of impulsive interference is
the electromagnetic interference (EMI), also called radio fre-
quency interference (RFI). It is a widely recognized cause of
reception problems in communications and navigation
devices.

[0011] EMI is a disturbance that affects an electrical circuit
due to either conduction or radiation emitted from a source
internal or external to the device. EMI may interrupt, obstruct,
or otherwise degrade the effective performance of the device,
and limit its link budget. The detrimental effects of EMI are
broadly acknowledged in the industry and include: (i)
reduced signal quality to the point of reception failure, (ii)
increased bit errors which degrade the system resulting in
lower data rates and decreased reach, and (iii) increased
power output of the transmitter, which reduces the battery life
and increases its interference with nearby receivers.

[0012] A major and rapidly growing source of EMI in com-
munication and navigation receivers is other transmitters that
are relatively close in frequency and/or distance to the receiv-
ers. Multiple transmitters and receivers are increasingly com-
bined in single devices which produces mutual interference A
typical example is a smartphone equipped with cellular, WiFi,
Bluetooth, and GPS receivers. Other typical sources of strong
EMI are on-board digital circuits, clocks, buses, and power
supplies.

[0013] Most state-of-the-art analog mitigation methods of
EMI focus on reducing the interference before it reaches the
receiver, and none of these methods allows effective EMI
filtering once it has entered the receiver chain. After the
interference has entered the signal path, only computationally
and silicon intensive nonlinear, non-real-time digital signal
processing solutions are offered.

[0014] Other systems impeded by the impulsive noise and
artifacts are various sensor systems, including all coherent
imaging systems. A common example is various medical
imaging systems such as ultrasonic, which are generally
affected by multiplicative shot (or speckle) noise. Typically,
various methods of reduction of the speckle noise involve
non-real-time adaptive and non-adaptive speckle filtering of
the acquired images, or multi-look processing.

BRIEF SUMMARY OF THE INVENTION

[0015] Due to the sporadic and transient nature of impul-
sive interferences, their effective suppression can be achieved
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by using filters which behave nonlinearly only during the
occurrence of relatively high power disturbances, and main-
tain linear behavior otherwise. The present invention over-
comes limitations of the prior art by providing a novel method
for identifying and discriminating between, in real time, the
conditions of the signal with and without impulsive distur-
bances. This method can be implemented without substantial
changes in the signal processing chain of a communication or
data acquisition system.

[0016] The present invention also overcomes the shortcom-
ings of the prior art through the introduction of the novel
SPART filter family. This filter family can be considered a
novel non-obvious improvement on the Single Point Analog
Rank Tracker (SPART) filter initially described in (Nikitin,
2006, 2008, and 2009), with which the new filters share some
methodological similarities. In this disclosure, reference to
“SPART”" and “FrankenSPART™” filters shall mean those of
the present invention SPART filter family, and not the SPART
filter disclosed in (Nikitin, 2006, 2008, and 2009), which we
may refer to in this application as “prior-SPART™".

[0017] The present invention SPART filters have the fol-
lowing useful properties:

[0018] (i) a SPART filter can replace a corresponding
analog linear filter in the signal chain of a device;

[0019] (ii) a SPART filter has the ability to sense and
discriminate between, in real time, the conditions of the
signal with and without impulsive disturbances;

[0020] (iii) when the mixture of the signal and the noise
is non-impulsive, a SPART filter acts just like the linear
filter it replaces; and

[0021] (iv) a SPART filter senses the spurious impulsive
disturbances in real time, and adjusts its behavior for the
duration of those disturbances in a manner which
reduces the power of the disturbances.

[0022] When an interference contains an impulsive com-
ponent, SPART filters have the ability to improve the signal-
to-noise ratio even if the spectral density of the noise lies
entirely within the passband of the signal.

[0023] SPART filters can also be implemented digitally,
without memory and high computational cost limitations of
the nonlinear processing found in the existing art.

[0024] Further scope of the applicability of the invention
will be clarified through the detailed description given here-
inafter. It should be understood, however, that the specific
examples, while indicating preferred embodiments of the
invention, are presented for illustration only. Various changes
and modifications within the spirit and scope of the invention
should become apparent to those skilled in the art from this
detailed description. Furthermore, all the mathematical
expressions and the examples of hardware implementations
are used only as a descriptive language to convey the inven-
tive ideas clearly, and are not limitative of the claimed inven-
tion.

BRIEF DESCRIPTION OF FIGURES

[0025] FIG.1.Simplified block diagram of implementation
of a FrankenSPART method and/or circuit.

[0026] FIG. 2. Comparison of FrankenSPART with series
combinations of RC integrator and slew rate limiter. The input
signal is a harmonic tone affected by (i) an additive broadband
white impulsive noise, (ii) a broadband white nonimpulsive
noise, and (iii) by the sum of (i) and (ii). The input is filtered
by (a) an RC integrator followed by a slew rate limiter (“RC-
SRL”), (b) a slew rate limiter followed by an RC integrator
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(“SRL-RC”), and (c) by a FrankenSPART filter with the
corresponding time constant and slew rate parameters. The
gray lines in all traces show the outputs when the input is a
pure tone unatfected by the noise. One can see that, while the
RC-SRL is effective against the nonimpulsive noise, and the
SRL-RC is effective against the impulsive noise, these com-
binations fail in the presence of the noise which is the sum of
both impulsive and nonimpulsive. FrankenSPART, on the
other hand, performs well in all three cases.

[0027] FIG. 3. Comparison of FrankenSPART with series
combinations of RC integrator and slew rate limiter. The input
signal is a harmonic tone affected by the sum of broadband
white impulsive and nonimpulsive noises, corresponding to
case (ii1) in FIG. 2. The input is filtered by (a) an RC integrator
followed by a slew rate limiter (“RC-SRL”), (b) a slew rate
limiter followed by an RC integrator (“SRL-RC”), and (c) by
a median FrankenSPART filter with the corresponding time
constant and slew rate parameters. The gray lines in all traces
show the power density of the sum of the signal and the noise
before filtering. One can see that the FrankenSPART filter
lowers the noise floor even in the signal passband, without
affecting the signal, resulting in the SNR improvement.
[0028] FIG. 4. Simplified setup for demonstration of the
impulsive nature of interchannel interference.

[0029] FIG. 5. Two equal-power transmitters are sending
messages simultaneously, and the path attenuation is equal.
Since the power of the out-of-band interference is much
smaller than the in-band signal, the received message is
uncorrupted and accurately represents the in-band transmit-
ted message indicated by traces I and Q.

[0030] FIG. 6. With 75 dB gain in the receiver to compen-
sate for the additional 75 dB path loss of the in-band trans-
mitter, the out-of-band interference becomes strong enough
to disrupt the message in the receiver using the linear base-
band filters. The receiver with the FrankenSPART filters is
largely unaffected by the interference. (The gray traces show
the uncorrupted receiver signals [ and Q.)

[0031] FIG. 7. With 95 dB gain in the receiver to compen-
sate for the additional 95 dB path loss of the in-band trans-
mitter, the out-of-band interference completely overpowers
the message in the linear receiver, while the receiver with the
FrankenSPART filters still maintains quality signal. (The
gray traces show the uncorrupted receiver signals [ and Q.)
[0032] FIG. 8. Example of a SPART filter £ G comprising
a combination of FrankenSPART filters S and satisfying the
conditions (i) through (iv) of Section 1.3. In linear regime
L behaves as a low-pass filter with the cutoff frequency
(2memt;pgpepmrIV14+rIV 2rixrlomx) ' ~(10t)™". The slew
rate parameter |1 is controlled by the measured IQR of the
differences between the input signal x(t) and the output of a
first-order low-pass filter h (t)*x(t). The gain G sets the range
of linear behavior of £. .

[0033] FIG. 9. Mitigation of impulsive noise by the SPART
filter £. shown in FIG. 8 in comparison with the correspond-
ing linear filter. One can see that during impulsive distur-
bances (indicated by the gray shaded intervals between the
vertical dashed lines) the filter £ switches into the nonlinear
mode, limiting the rate of change of the output. The filter
remains in this mode until the difference between the input
and output of the filter returns to linear range.

[0034] FIG. 10. Mitigation of impulsive noise by the
SPART filter £ shown in FIG. 8 in comparison with the
corresponding linear filter. The filter £ reduces the total
power of the noise in the passband of the signal by about an
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order of magnitude in comparison with the linear filter, with-
out noticeable attenuation of the signal.

[0035] FIG. 11. Example of a SPART filter modification
M designed to suppress the output during the impulsive
disturbances. The absolute value of the difference between
the intermediate signals y(t) and h_*x(t) is compared with the
product pt. This value exceeding the product pt indicates the
nonlinear regime of the first median-mode FrankenSPART
filter S (on the left). Applying the multiplier O[ut—Iy(t)-
h_*x(t)!] to the output of the first filter § results in suppres-
sion of the output during the nonlinear behavior of the first
filter §. The second median-mode FrankenSPART filter
S (on the right) removes the short-duration residual non-
zero output during the impulsive disturbances.

[0036] FIG. 12. Mitigation of impulsive noise by the
SPART filter M shown in FIG. 11 in comparison with the
corresponding linear filter. One can see that during impulsive
disturbances (indicated by the gray shaded intervals between
the vertical dashed lines) the filter M switches into the non-
linear mode, suppressing the output. The filter remains in this
mode until the difference between the input and output of the
filter returns to linear range.

[0037] FIG. 13. Mitigation of impulsive noise by the
SPART filter M shown in FIG. 11 in comparison with the
corresponding linear filter.

[0038] FIG. 14. Analog band-limited white Gaussian
sparse noise of bandwidth W (lower panel) reconstructed
from an ideal discrete sparse noise with the sparsity factor
s2=10 (upper panel).

[0039] FIG.15. Upper panels: Simulated densities of band-
limited continuous sparse Gaussian noises with the sparsity
factors s*=10 and s°=100 (solid lines), and their respective
idealized approximations according to equation (15) (dashed
lines). Lower panels: Approximation of equation (22)
(dashed lines) in comparison with the simulated densities
(solid lines) for the equal-power additive mixtures of the
sparse and non-sparse band-limited continuous Gaussian
noises. Vertical dashed lines indicate the first and third quar-
tiles of the non-sparse component, and the gray bands fill the
interquartile ranges of the mixtures of the sparse and non-
sparse noses.

[0040] FIG. 16. Mixture of sparse (sparsity factor s>=10)
and non-sparse bandpass Gaussian noises of bandwidth AW.

[0041] FIG. 17. Peakedness as function of bandwidth for
the sparse Gaussian noises of the initial sparsity s*~10 and
s2=100. The dashed lines indicate the respective horizontal
and oblique asymptotes.

[0042] FIG. 18. When a mixture of sparse and non-sparse
components undergoes reduction in bandwidth, it becomes
less impulsive and the distinction between the non-sparse
intervals and those affected by the sparse component dimin-
ishes. The gray bands indicate the sparse intervals of the
mixture.

[0043] FIG. 19. Panel 1 of the figure shows simulated
instantaneous total power response of quadrature receivers
tuned to 1 GHz and 3 GHz frequencies (gray and black lines,
respectively) to an amplitude-modulated 2 GHz carrier of unit
power. The squared impulse response of the lowpass filters in
the receiver channels is shown in the upper right corner of the
panel. Panels I1(a) and II(b) of the figure show the modulating
signal and its first derivative, respectively. For the modulating
signal shown in the figure, n=2 in equation (35). The lower
panel of the figure shows instantaneous total power response
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of'a quadrature receiver as a spectrogram in the time window
w(t) shown in the upper left corner of the panel.

[0044] FIG. 20. Upper panel shows peakedness in dBc of
the instantaneous total power response of a quadrature
receiver as a function of frequency. The horizontal dashed
line corresponds to the peakedness of a Gaussian distribution.
The lower panel shows the total excess (solid line) and aver-
age (dashed line) power in the receiver versus frequency. The
transmitted signal is a 2 GHz carrier amplitude-modulated by
a random 10 Mbit/s bit stream. The impulse response w(t) of
the receiver and the pulse shaping of the modulating signal
are as in the example shown in FIG. 19.

[0045] FIG. 21. Single transmit-and-receive channel for a
typical phased-array medical ultrasound imaging system.
The SPART filters simply replace the the anti-alias filter F1
and the low-pass filter F2 in the VGA control (both high-
lighted in gray).

[0046] FIG. 22. Example of implementation of SPART
using operational amplifiers. The details of the implementa-
tions of the differential amplifier and the voltage-controlled
amplifiers are omitted.

[0047] FIG. 23. Comparator functions given by equations
(2) and (66) (for g=33 and a=7.3x107°x,).

[0048] FIG. 24. Example of implementation of Fran-
kenSPART using operational amplifiers.

[0049] FIG. 25. Attenuation of harmonic signal of various
amplitudes and frequencies. Notice that for the signals with
the amplitudes below the “critical’ (ut) amplitude, the Fran-
kenSPART acts as an RC filter, and for the signals with the
amplitudes above the critical, the FrankenSPART circuit
behaves like a slew rate limiting filter.

[0050] FIG. 26. Illustration of the absence of nonlinear
distortions of harmonic signals with the amplitude below
critical when filtered by the FrankenSPART circuit.

[0051] FIG. 27. Nonlinear distortions of harmonic signals
with critical amplitude by the slew rate limiting filter. Notice
that, since the output of the filter is symmetrical, only odd
harmonics are present.

[0052] FIG. 28. Nonlinear distortions of harmonic signals
with critical amplitude by the FrankenSPART and slew rate
limiting filters.

[0053] FIG. 29. Response of FrankenSPART to boxcar
pulses of various height and duration in comparison with the
response of an RC circuit (top three panels) and a slew rate
limiting circuit (bottom three panels). In all panels, the gray
lines correspond to the input boxcar pulses, the solid black
lines correspond to the FrankenSPART output, the dashed
lines correspond to the RC and slew rate limiting circuits, left
and right respectively. One can see that the attenuation of
boxcar pulses by FrankenSPART is significantly higher then
by the RC filter for large pulses, and higher then by the slew
rate limiting filter for small pulses.

[0054] FIG. 30. Comparison of attenuation of boxcar
pulses by FrankenSPART (solid lines) in comparison with an
RC integrator (gray dashed lines) and a slew rate limiting
filter (black dashed lines).

[0055] FIG. 31. Response to Gauissian white noise with
different rms values. The noise bandwidth is approximately
twenty times the bandwidth of the linear RC filter Notice that
for the signals with the rms below pt/2, the FrankenSPART
circuit acts as an RC filter, and for the signals with the rms
much larger than pt/2, the FrankenSPART circuit behaves
like a slew rate limiting filter.
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[0056] FIG. 32. Response to Gauissian white noise with
different rms values. The noise bandwidth is approximately
five times the bandwidth of the linear RC filter Notice that for
the signals with the rms below pt/2, the FrankenSPART cir-
cuit acts as an RC filter, and for the signals with the rms much
larger than pt/2, the FrankenSPART circuit behaves like a
slew rate limiting filter.

[0057] FIG. 33. FrankenSPART attenuation of impulsive
white noise in a broadband signal. The noise bandwidth is
approximately ten times the bandwidth of the linear RC filter,
and its index of stability (characteristic exponent) is a=2
(Gaussian), 1.75, and 1.5. In all panels, the gray lines show
the input signal, the solid black lines show the Fran-
kenSPART output, and the dashed lines show the output of the
RC filter. In the example, the power signal to noise ratio of the
unfiltered noisy signal is maintained constant.

[0058] FIG. 34. FrankenSPART attenuation of impulsive
white noise in a broadband signal. The noise bandwidth is
approximately ten times the bandwidth of the linear RC filter,
and its index of stability (characteristic exponent) is a=2
(Gaussian), 1.75, and 1.5. In all panels, the gray lines corre-
spond to the input signal, the solid black lines correspond to
the FrankenSPART output, and the dashed lines correspond
to the RC filter. In the example, the power signal to noise ratio
of the unfiltered noisy signal is maintained constant.

[0059] FIG. 35. Demodulation of a binary phase-shift key-
ing (BPSK) signal. Panel I shows that, for a noise-free signal,
replacement of an RC filter in the bandpass filter at the inter-
mediate frequency of a superheterodyne receiver does not
affect the performance of the receiver. However, as shown in
Panel 11, the SPART-based receiver greatly improves the per-
formance in the presence of high intensity impulsive noise.
[0060] FIG. 36. Average FrankenSPART output D;, as a
function of noise rms.

[0061] FIG. 37. Comparison of noise thresholds estab-
lished by FrankenSPART and RMS circuits.

[0062] FIG. 38. Example of a circuit for obtaining the
prime and the first two derivative signals.

[0063] FIG. 39. Prime (solid) and first two derivative
(dashed and dotted, respectively) outputs of the circuit shown
in FIG. 38.

[0064] FIG. 40. Example of sampling according to the
algorithm of Section 6.1.1. The incoming prime signal is
shown by the gray lines, the samples are shown by the dots,
and the black lines show the signals reconstructed by cubic
splines. The ticks at the x-axis indicate the sampling times.
[0065] FIG.41. Timing the maxima of a prime signal above
athreshold by downward zero crossings of an auxiliary signal
proportional to the first time derivative of the prime signal.
[0066] FIG.42. Example of a circuit for constructing prime
and auxiliary signals from an input signal x, (t).

[0067] FIG. 43. Increasing timing accuracy of the BPS by
using an auxiliary signal which is an even function of the
derivative of the prime signal, such that the first derivative of
this function has a sharp extremum at zero (for example, an
inverse hyperbolic tangent).

[0068] FIG. 44. Example of a BPS circuit with increased
slew rate of zero crossings by the auxiliary signal.

[0069] FIG. 45. Improving precision and extending the
dynamic range of the amplitude measurements by using non-
linear BPS.
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[0070] FIG. 46. Example of implementation of monotonic
nonlinear amplifier for logarithmic transformation of the
prime signal.

[0071] FIG. 47. Simplified receiver block diagram.

DETAILED DESCRIPTION OF THE INVENTION

Intermittently Nonlinear Analog Filters for Suppres-
sion of Impulsive Interferences

[0072] Effective suppression of impulsive interferences in
a signal chain of a communication receiver typically requires
nonlinear means, for example, median or slew rate limiting
filters. However, usage of nonlinear filters typically results in
multiple detrimental effects on normal signal flow, such as
nonlinear distortions and excessive attenuation of the signal.
The effect of nonlinear filters on the useful signal components
is typically unpredictable since it depends on the type and
magnitude of the interfering signal.

[0073] Due to the sporadic nature of impulsive interfer-
ences, their effective suppression can be achieved by using
analog filters which behave nonlinearly only during the
occurrence of relatively high power disturbances, and main-
tain linear behavior otherwise. We here describe such inter-
mittently nonlinear analog filters.

1.1 Intermittently Nonlinear RC Integrator:
FrankenSPART

[0074] Let us consider a modification of the Single Point
Analog Rank Tracker (SPART) filter initially described in
(Nikitin, 2006, 2008, and 2009) (herein “prior-SPART”).
This modification, to which we may refer further as “Fran-
kenSPART”, constitutes the main building block of the
SPART filter family described in this disclosure.

[0075] The FrankenSPART filter can be represented by the
operator § =8 (q,l,T) such that

S (@rowO=x(g ) O=pde] j—m *(O-x(g1T)(0)]+
2¢-1}, (€9

where [dt . . . denotes the primitive (antiderivative), x(t) is the
input signal, %(q,uL,T)(t) is the output, and the comparator

function F, (x) with the resolution (linear range) parameter c.
is

@

- - for |x| < &
Falx) = @
sgn(x) otherwise,

where sgn(x) is the sign function. The parameters <, |1, and q
are the time constant, slew rate, and quantile parameters of the
filter, respectively. Equation (1) can also be written in the
form of a differential equation as follows:

d -
X 1 DO = p{F w30~ x(g. g DO+ 29 - 1.
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[0076] Equation (1) and/or equation (3) can be used as a
basis for the following implementation of FrankenSPART:

[0077] (i) apply the comparator function For (x) given
by equation (2) to the difference x(t)—y(q.u,T)(t) of the
input signal x(t) and the feedback of the output y(q,u,T)
()

[0078] (ii) linearly transform the output of Step (i) by
adding the offset 2q-1 indicative of the quantile param-
eter q, then multiplying the result by the slew rate param-
eter ; and

[0079] (iii) integrating said linearly transformed output
of the comparator to obtain the output of the filter y%(q,
L.

[0080] A simplified block diagram of an implementation of
a FrankenSPART method and/or circuit is shown in FIG. 1.
[0081] Anexample of anumerical algorithm implementing

a finite-difference version of a FrankenSPART filter is given
by the following MATLAB function:

function Dq = S_undertilde(x,t,q,mu,tau)
Dq = zeros(size(x)); alpha = mu*tau; Dq(1) = x(1) + alpha*(2*q-1);
for i = 2:length(x);
FF = (x(i)-Dq(i-1))/alpha;
if abs(FF)>1, FF = sign(FF); end
Dq(i) = Dq(i-1) + mu * ( FF + 2*q - 1) * (t(i)-t(i-1));
end
return

[0082] Note that, given the three parameters T, 1, and q,
obtaining the value of the output for the current time and input
values requires only a few simple operations, and the knowl-
edge of just two previous values: the time and the output.

1.1.1 In Linear Regime FrankenSPART is an RC
Integrator

[0083] When the condition that the absolute value of the
difference between the input and the output does not exceed
the resolution of the comparator, Ix(t)—y(quLT)(D)I=pT,
holds, solving equation (3) leads to

X(g, D) = he(@ 30 + pr(2g = 1), “
where
)

he(D) = ée”“@(t)

is the impulse response of an RC integrator with RC=t.
[0084] In median mode q=1/2, and

©

(1 T]([) = h (D) =x(1) if ih (1) = x(1)
Xl zaﬂs g T

<p.

That is, given an input signal x(t), the output of the filter

1
Sz7)
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will be equal to the output of an RC integrator with RC=t if
the absolute value of the slew rate of the latter does not exceed

L.

1.1.2 In Nonlinear Mode Median FrankenSPART
Produces an Output with Constant Slew Rate

[0085] When the absolute value of the difference between
the input and output of the filter

exceeds the linear range (resolution) of the comparator F ,
the filter switches into the nonlinear mode, producing an
output with constant slew rate. The filter remains in this
constant slew rate mode until the difference between the input
and output of the filter returns to the linear range.

1.1.3 Median FrankenSPART is Not a Combination
of'an RC Integrator and a Slew Rate Limiter

[0086] Even though the median FrankenSPART filter acts
as either, its performance cannot be replicated through any
combination, series and/or parallel, of an RC integrator and a
slew rate limiter. To illustrate that, let us consider a simplified
example shown in FIG. 2, where the input signal is a harmonic
tone affected by (i) an additive broadband white impulsive
noise, (ii) a broadband white nonimpulsive noise, and (iii) by
the sum of (i) and (ii). The input is filtered by (a) an RC
integrator followed by a slew rate limiter (“RC-SRL”), (b) a
slew rate limiter followed by an RC integrator (“SRL-RC”),
and (c) by a FrankenSPART filter with the corresponding time
constant and slew rate parameters. The gray lines in all traces
show the outputs when the input is a pure tone unaffected by
the noise. One can see that, while the RC-SRL is effective
against the nonimpulsive noise, and the SRL-RC is effective
against the impulsive noise, these combinations fail in the
presence of the noise which is the sum of both impulsive and
nonimpulsive. FrankenSPART, on the other hand, performs
well in all three cases.

[0087] FIG. 3 provides the frequency domain picture for
case (iii). Neither RC-SRL nor SRL-RC improves the SNR,
while the FrankenSPART filter lowers the noise floor even in
the signal passband, without affecting the signal, resulting in
the SNR improvement.

1.2 FrankenSPART Mitigation of Interchannel
Interference

1.2.1 Impulsive Nature of Interchannel Interference

[0088] Interchannel interference in digital communications
is typically impulsive. Consider, for example, a simplified
measuring setup shown in FIG. 4. In the left-hand panel of the
figure, the transmitter emits a single 1.2 GHz tone with the
amplitude modulated by a random raised cosine-shaped 10
Mbit/s message. As illustrated in the upper right-hand panel,
the total instantaneous power of the in-phase and quadrature
components of an in-band quadrature receiver (Proakis and
Manolakis, 2006) is proportional to the squared modulating
signal. However, as shown in the lower right-hand panel, the
total instantaneous power in an out-of-band receiver tuned to
1 GHz is an impulsive pulse train with multiple of 100 ns
distance between the pulses. Note that there is no apparent
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relationship between the magnitude of the modulating signal
and the magnitude of the pulses.

[0089] It needs to be pointed out that the narrowness of
pulses in the impulsive pulse train of FIG. 4 is due to the fact
that, in this example, the bandwidth of the baseband filters in
the receiver is about twice the bandwidth of the modulating
signal. If one further reduces the bandwidth of the low-pass
filters, the power of the interference will be reduced propor-
tionally to the decrease in the bandwidth, and the interference
will have an appearance of much less impulsive, “Gaussian-
like” bandpass noise. If, however, the reduction in the band-
width is accomplished by using a FrankenSPART in place of
the first pole of the filter, the suppression of the interference
can be much higher. This is illustrated in the example below.

1.2.2 Suppression of Interference: Illustrative
Example

[0090] FIGS. 5 through 7 provide an illustrative example of
suppression of interchannel interference by FrankenSPART
filters.

[0091] InFIG. S5, two equal-power transmitters are sending
messages simultaneously, and the path attenuation is equal.
Since the power of the out-of-band interference is much
smaller than the in-band signal, the received message is
uncorrupted and accurately represents the in-band transmit-
ted message indicated by traces I and Q. As shown in FIG. 6,
with 75 dB gain in the receiver to compensate for the addi-
tional 75 dB path loss of the in-band transmitter, the out-of-
band interference becomes strong enough to disrupt the mes-
sage in the receiver using the linear baseband filters. The
receiver with the FrankenSPART filters is largely unaffected
by the interference. (The gray traces show the uncorrupted
receiver signals [ and Q.) FIG. 7 shows that, with 95 dB gain
in the receiver to compensate for the additional 95 dB path
loss of the in-band transmitter, the out-of-band interference
completely overpowers the message in the linear receiver,
while the receiver with the FrankenSPART filters still main-
tains quality signal. (The gray traces show the uncorrupted
receiver signals I and Q.)

1.3 Mitigation of Impulsive Noise by SPART Filters

[0092] Letusoutline a general list of properties of a SPART
filter (which we here denote as an operator £ useful for
mitigation of impulsive noise in the analog signal chain of a
communication receiver:
[0093] (i) £ can replace a corresponding analog linear
filter in the signal chain of a receiver;
[0094] (ii) £ has the ability to sense and discriminate
between, in real time, the conditions of the signal with
and without impulsive disturbances;

[0095] (iii) when the noise is purely thermal or otherwise
non-impulsive, £ acts just like the linear filter it
replaces, and

[0096] (iv) £ senses the spurious impulsive distur-
bances in real time, and adjusts its behavior for the
duration of those disturbances in a manner which
reduces the power of the disturbances.

[0097] Let us now provide an example of how a combina-
tion of FrankenSPART filters & can be used to construct a
SPART filter £ satisfying the conditions ((i)) through ((iv)).
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1.3.1 Discriminating Between Stationary State and
Impulsive Disturbances

[0098] Let D" (H)=Q(q, T)x(t) be the q th quantile of x(t) in

some time interval [t—it] such that T~! is much smaller than
the bandwidth of the input signal x(t),

{010 (00} ~{ 0100 D=1 )1 =g, o

where 8(x) is the Heaviside unit step function, Q(qf) is an

analog quantile filter, and

) L .
T TJr

denotes time averaging. (See references (Nikitin and David-
chack, 2003), (Nikitin, 2006, 2008, and 2009), and (Nikitin
and Davidchack, 2006 and 2007) for more general definitions
and detailed discussion of analog quantile filters.) Then, if the

product E and the slew rate | are much smaller than the
interquartile range (IQR) of the signal x(t) and its time deriva-
tive X(1), respectively,

E<<Dx3/4(l)—Dx1/4(l) and ;_1<<D‘3/4(z)—D"1/4(z), (8)
it follows from equation (3) that
{senlx(t) (g n o) (017 ~1-24, ©

and thus the filter § (q,ﬁ,g) approximates an analog quantile
filter for x(t):

S (@Os O RTO=QUq Dx0)=D'y(0): w0
Therefore, if the product E,; and the slew rate ;_1 are suffi-
ciently small, the filters

can be employed as quartile filters to measure the interquartile
range of the signal x(t) and/or its time derivative X(t). The
interquartile range is a robust statistic with the breakdown
point of 25%, and it can be used to reliably discriminate
between the stationary state of the signal and its outliers
(impulsive disturbances). For example, for the normal distri-
bution, the interval *2[D,,(0)-D, ()] (approximately
+2.6980) encompasses approximately 99.3% of the signal
values, and the values outside of this range can be considered
outliers.

1.3.2 Acting as Linear RC Filter when the Noise is
Purely Thermal or Otherwise Non-Impulsive

[0099] The filters
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can be employed as quartile filters to measure the interquartile
range of the signal ht(t)*x(t) and/or its time derivative. This
measured IQR allows us to determine the “normal” range of
the slew rate p for the filter

4!
(5]

so that it will behave as an RC integrator with RC=t unless it
encounters an impulsive disturbance (outlier).

1.3.3 Sensing and Mitigating Spurious Disturbances

[0100] When, during an impulsive disturbance, the abso-
lute value of the difference between the input and output of
the filter

3.4

exceeds the linear range (resolution) of the comparator

F,r, the filter switches into the nonlinear mode, producing an
output with a constant rate of change. The filter remains in this
constant slew rate mode until the difference between the input
and output of the filter returns to linear range. There are
various advantages of such mitigation by limiting the slew
rate of the outliers as opposed to simply confining the output
of the filter to the range determined by measuring the IQR.
[0101] The block diagram shown in FIG. 8 provides and
example of a SPART filter £ comprising a combination of
the FrankenSPART filters § and satisfying the conditions
(1)) through ((iv)). In this example, in linear regime
L behaves as a low-pass filter with the cutoff frequency
Qrevmt;pgpepmrlV 147l 2rbevlxmx) ' ~(10t)™". The slew
rate parameter | is controlled by the measured IQR of the
differences between the input signal x(t) and the output of a
first-order low-pass filter h (t)*x(t). The gain G sets the range
of linear behavior of £. For example, for the input signal
which is essentially Gaussian in statistical properties, the gain
G can be calculated from the percentile ‘confidence’ of this
range p as

) an
T 2erft(1/2)

[0102] FIGS. 9 and 10 illustrate the performance of the
SPART filter £ shown in FIG. 8 in comparison with the
corresponding linear filter. For the sake of simplicity, as the
“native” communication signal we use four harmonic tones
located 4 MHz apart near 1 GHz. The incoming signal is an
analog 100 MHz intermediate frequency signal (IF) of one of
the channels of the receiver. The Gaussian component of the
noise is the thermal noise, and the impulsive component is
due to the 2 GHz tone amplitude-modulated by a random bit
sequence at 4 Mbit/s (T=250 ns). The pulse shaping is the
same raised cosine shaping used in the previous examples.

1.4 Modification of Nonlinear Behavior to Address
Specific Problems

[0103] The nonlinear behavior of a SPART filter can be
modified to improve performance when addressing particular
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problems. These modifications can in general relate to (i)
changes in the measurement of the interquartile range, (ii)
changes in the comparator function, and/or (iii) introduction
of threshold filtering.

[0104] For example, for a relatively narrow passband, the
interquartile range of the slew rate can be determined simply
by measuring the interquartile range of the input signal and
mitiplying it by the central frequency. Also, if the distribution
of the non-impulsive component is known to be an even
function (for example, Gaussian), it may be sufficient to mea-
sure a single non-median percentile in order to determine the
interquantile range.

[0105] A FrankenSPART filter with q=1/2 and the com-
parator function of the form

. { d for |x| <& 12
Folx)=9 @

0 otherwise

will produce a constant (instead of linearly changing) output
during its non-linear operation.

[0106] Threshold filtering is the most flexible modification
of'the SPART filters, as illustrated in the example below.
[0107] The SPART filter M shown in FIG. 11 provides an
example of such a modification designed to suppress the
output during the impulsive disturbances. The absolute value
of the difference between the intermediate signals y(t) and
h_*x(t) is compared with the product pt. This value exceeding
the product pt indicates the nonlinear regime of the first
median-mode FrankenSPART filter § (on the left). Applying
the multiplier

O[Ty (6)-h *x(2)1] 13)

to the output of the first FrankenSPART results in suppression
of the output during the nonlinear behavior of the first filter.
The second median-mode FrankenSPART filter S (on the
right) removes the short-duration residual non-zero output
during the impulsive disturbances.

[0108] One skilled in the art would recognize that other
modifications can be implemented in a similar manner.
[0109] FIGS. 12 and 13, which correspond to the FIGS. 9
and 10, respectively, illustrate the performance of the SPART
filter M shown in FIG. 11 in comparison with the corre-
sponding linear filter.

2 Sparse Noise and Its Mitigation by Intermittently
Nonlinear Filters

[0110] Section 2 describes the following: (i) impulsive
interferences can be modelled as mixtures containing both
nonsparse and sparse components; (ii) sparse and nonsparse
components can be separated (in the time domain), and the
sparse component of the interference can be mitigated by
nonlinear means, leading to improvement in signal quality,
and (iii) the reduction in the bandwidth results in the reduc-
tion in sparsity, and thus the nonlinear filtering should be
performed either before the final reduction in the bandwidth,
or as part of the bandwidth reduction.

[0111] Signals with high degree of peakedness, or impul-
sive, can be modeled using the concept of sparse signals. The
amplitude distribution of an idealized sparse signal contains a
Dirac d-function at zero, and thus a sparse signal contains a
finite fraction of its values at zero. Sparse signal approxima-
tion can be used for a variety of naturally occurring and/or
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man-made signals, for example, the shot noise, or the signal
due to interchannel interference in digital communication
systems (Nikitin, 2011).

[0112] Impulsive signal can be approximated as a mixture
of non-sparse and sparse signals, and analysis of such an
approximation provides opportunities for designing effective
schemes for mitigation of impulsive interferences. In particu-
lar, the use of intermittently nonlinear filters for this purpose
is demonstrated.

2.1 Sparse Noise
2.1.1 Continuous Sparse Signal

[0113] Let us consider a zero-mean density function ¢(x)
with the variance 0>>0, such that

< 14
limf dxe(x) =0. 19
0,

Then, if a continuous signal X(t) in an arbitrary time interval
[0,T] is described by the density function (Nikitin and David-
chack, 2003)

T 15
o) = 1 f Aol - X = (1 s 200 450, )
0

where 3(x) is the Dirac d-function (Dirac, 1958), it can be
viewed as a zero-mean sparse signal with the average power
3>>0 and the sparsity factor s°=1. Note that a sparse signal
can be deterministic as well as stochastic.

[0114] The density function ¢ (x) represents the probability
density for a value of a random sample (that is, a sample taken
at a random time) in the interval [0,T]. Thus, in a sparse
signal, there is non-zero probability to find the value of the
signal at exactly zero.

2.1.2 Discrete White Sparse Noise

[0115] A white noise has the property that each sample is
perturbed independently of all the others. Then in an ideal
discrete white sparse noise each amplitude X, is a random
variable with the probability density function ¢ (x) given by
equation (15).

[0116] The moments of ¢ (x) relate to the moments of ¢(x)
through the sparsity factor as

(e 2w (16)
[0117] The peakedness of the discrete sparse noise can be

defined through the kurtosis (Abramowitz and Stegun, 1972)
of its distribution as

TP VR an
Koo =5 =573 =5 K0

and it is proportional to the sparsity factor. Since the peaked-
ness of the Gaussian distribution is unity, the peakedness of
the sparse Gaussian noise equals to its sparsity factor. The
peakedness of a zero-mean signal in units “decibels relative to
Gaussian” can be expressed as
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o (18)
Kapc = 1018[§],

and thus K ;- equals zero for the Gaussian distribution.

2.1.3 Band-Limited Continuous Sparse Noise

[0118] Since an impulse response of a band-limited linear
system has infinite duration, it is impossible for an analog
band-limited white noise to have a density function contain-
ing a Dirac d-function at zero. Equation (15), however, can
often be used as a reasonable approximation to the density
function of a continuous sparse noise, and thus the concept of
sparsity can be extended to analog signals.

[0119] An ideal discrete white sparse noise can be viewed
as a Nyquist-sampled analog sparse noise of bandwidth W,
and the analog noise can be reconstructed using the Whit-
taker-Shannon interpolation formula (Shannon, 1949):

x5(0) = Z Xih(t—1;), (19
here A(F) = sin(27xWi) . i
whete An) = = - 4 i = -

FIG. 14 provides an example of an analog band-limited white
Gaussian sparse noise of bandwidth W (solid line) recon-
structed from an ideal discrete sparse noise with s>=10 (dots).
[0120] Since

1 20)
= 5570

fm dih(t — 1)h(r — 1))

where 8, is Kronecker delta, the average power of the analog

noise equals that of the discrete, {x2 (1)) =0>.

[0121] In the Nyquist-sampled sparse noise of bandwidth
W, the average time interval between the non-zero samples is
s*/(2W). For high sparsity, the overlap of the pulses in the
pulse train given by equation (19) is insignificant, and the
forth cumulant of x (t) can be expressed as

(x?(t)) = %sz(x4)w(for s2>> 1)

The peakedness of the band-limited continuous noise of high
sparsity can now be expressed through the peakedness of the
discrete sparse noise as

4 21
= 3?%2?;12 = %ssz for 5% >> 1, ¢h
X2t

where the angle brackets denote time averaging.

[0122] Thus, forhigh sparsity, the density ofthe continuous
white sparse noise can be approximated by the density of the
Nyquist-sampled discrete sparse noise with the sparsity fac-
tor
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This is illustrated in the upper panels of FIG. 15, which show
the simulated densities of band-limited continuous sparse
Gaussian noises with the sparsity factors 10 and 100 (solid
lines), and their respective idealized approximations accord-
ing to equation (15) (dashed lines).

2.2 Mixture of Random Noise and Sparse Signal

[0123] The validity of such an approximation must be con-
sidered in the context of the noise containing both sparse and
non-sparse components. For example, for an additive mixture
of a non-sparse random noise and a sparse signal, the ideal-
ized approximation to the sparse density function is adequate
if both following conditions are met: (i) the sparsity is high
(s*>>1), and (ii) the total power of the sparse signal is not
much higher than the power of the non-sparse noise. In that
case, the density of the mixture ¢,,, (X) can be represented as
follows:

B0, ) () =(1=5)P, () 457, () *ls™ '), 22

where ¢,,(x) and ¢(x) are the amplitude densities of the ran-
dom noise and the sparse signal, respectively, and the asterisk
denotes convolution. The lower panels of FIG. 15 show the
approximation of equation (22) (dashed lines) in comparison
with the simulated densities (solid lines) for the equal-power
additive mixtures of the sparse and non-sparse band-limited
continuous Gaussian noises.

2.3 Quantile Range

[0124] Letx, andx',=x +0x, bethe qth quantiles, q<1/2, of
the cumulative distributions of the non-sparse noise and the
mixture, respectively. Assuming that ¢, (x) is continuous, we
can write

Du(g) = g, Dy (x]) = g + %5 PulX,), @3
and
1 1 24
Buusti) =(1- 5 Jo 06 + 5.0 = e
where ®*(x)=¢,,(x)*®(x). Then, since
= ~1l+s572
for large s2,
8x, = @, (¥ @5
Xg = m[q— *(xq)]5
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and, for even ¢(x),

X - x‘; (26)

X g —Xg
(1-29)~ [, (x{_p) — @, (x))] 1-24

520, (x1 g — %) 20, (xg) (x1-g = %)

For large s, the second term in the right-hand side of equation
(26) vanishes, and the quantile range for the mixture becomes
equal to that of the non-sparse component regardless the
density and/or power of the sparse component.

[0125] For example, for Gaussian noise

2
e 207 N

@n(x) =

1
oV 2x

and x qzo\/ierf‘ 1(1-2q). Then the interquartile ranges for the
mixture and the non-sparse Gaussian noise relate as

vreaffar (4]} @

%9 : <1+1.17572,
2 1z
4s2erf” (2]

05— Q1

<l+

and, for large s* they are approximately equal regardless the
power of the sparse component. This is illustrated in the lower
panels of FIG. 15, where the vertical dashed lines indicate the
first and third quartiles of the non-sparse component, and the
gray bands fill the interquartile ranges of the mixtures of the
sparse and non-sparse noses.

2.4 Mitigation of Impulsive (Sparse) Interference

[0126] Most of the power of a sparse noise of high sparsity
comes from relatively short (‘sparse’) intervals of the dura-
tion At, approximately equal to the inverse of the noise band-
width AW,

A= 28)

where K is a small constant in the neighborhood of unity.
Since ZAt,=s~>T for large T, the average rate of occurrence R
of these pulses is

AW (29)
Ks?

[0127] In an additive mixture of uncorrelated sparse and
non-sparse noises, the power averaged over the sparse inter-
vals of the sparse component will be larger than the total
average power of the mixture. FIG. 16 shows an example of a
mixture of sparse (s*=10) and non-sparse bandpass Gaussian
noises of bandwidth AW.
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[0128] In a mixture of sparse and non-sparse noises, the
power averaged over the non-sparse intervals equals that of
the non-sparse component of the mixture,

(P =R (30)

On the other hand, the power averaged over the sparse inter-
vals is always greater,

(p,.) ~(p)s(p,) 51

where, for high sparsity, the second term on the right-hand
side can be relatively large even ifthe total power of the sparse
component is low.

[0129] The sparse intervals can be identified, for example,
using the fact that the interquartile range of the mixture
depends only weakly on the sparse component, and its upper
bound is independent of the total power of the sparse compo-
nent (see Section 2.3). By excluding (or otherwise reducing
the power of) the sparse intervals, one can improve overall
signal-to-noise ratio for a signal affected by the mixture of the

sparse and non-sparse interferences by a factor 1+{P.{/) P, )-
[0130] The mitigation of the sparse interference then can be
accomplished by the procedure outlied below.

[0131] First, one can identify the characteristics of a linear
filter which would be used in the device in the absence of
sparse interference (the “designed” linear filter). If the statis-
tical properties of the mixture of the signal and the non-sparse
noise are known, one can determine the range of the differ-
ence between the input signal and the output of said linear
filter.

[0132] Then, one can configure an intermittently nonlinear
circuit with compares the feedback of its output with the input
signal and operates linearly or nonlinearly based on this com-
parison. In particular, when the difference between the input
and the feedback of the output is within said range corre-
sponding to the non-sparse intervals of the input signal, said
intermittently nonlinear circuit behaves as said designed lin-
ear filter. This will ensure that the output of said intermittently
nonlinear circuit during the non-sparse intervals is equal to
that of the designed linear filter.

[0133] When said difference is outside of said range, it
indicates the presense of the sparse interference. Then said
circuit behaves nonlinearly and can be configured to provide
an output which can be utilized in a manner which mitigates
said sparse interference.

[0134] When the range of said difference between the input
signal and the output of said linear filter in the absence of the
sparse interference is not known a priori, one can configure a
nonlinear circuit which outputs, given the input mixture of the
signal and both sparse and non-sparse interferences, a control
level signal indicative of said range of the difference between
the input and the output in the absence of the sparse interfer-
ence.

[0135] FIGS. 8 and 11 provide examples of implementa-
tions of the procedure outlined above.

[0136] In both examples, the range of the difference
between the input and the linear output in the absence of the
sparse interference is determined by measuring the interquar-
tile range of said difference for the mixture of the signal and
both sparse and non-sparse interferences. As illustrated in
Section 2.3, the use of this measure is justified by its insen-
sitivity to the sparse component.

[0137] Inthe example of FIG. 8, the mitigation is achieved
by limiting the slew rate of the output during the impulsive
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disturbances. In the example of FIG. 11, during the impulsive
disturbances the output is suppressed.

2.5 Effect of Linear Filtering on Sparsity and
Peakedness

[0138] While the quantitative relation of sparsity to peaked-
ness given by equation (17) is accurate only for high sparsity,
the dependence of peakedness on sparsity remains monotonic
for low sparsity. Thus peakedness can be used as a measure of
sparsity.

[0139] While sparsity remains high, reduction of the sig-
nal’s bandwidth through linear filtering proportionally
reduces its peakedness and, therefore, sparsity. At a band-
width AW such that

w (32)
AW<<S—2

any random white noise becomes non-sparse band-limited
Gaussian for any density function ¢(x) (Rice, 1944). We can
thus define the sparsity cutoff bandwidth for a sparse noise of
given initial sparsity s> and initial bandwidth W as

33

and view the noise with the bandwidth below and above the
cutoff as non-sparse and sparse, respectively.

[0140] FIG. 17 plots peakedness as function of bandwidth
for the sparse Gaussian noises of the initial sparsity 10 and
100. The dashed lines indicate the respective horizontal and
oblique asymptotes.

[0141] As illustrated in FIG. 18, when a mixture of sparse
and non-sparse components undergoes reduction in band-
width, it becomes less impulsive and the distinction between
the non-sparse intervals and those affected by the sparse
component diminishes. The gray bands indicate the sparse
intervals of the mixture.

[0142] As was shown in Section 2.4, sparse noise can be
mitigated using nonlinear filtering techniques. Thus, if a
wide-bandwidth noise in the signal chain of a device can be
viewed as a mixture of non-sparse and sparse components, it
is advantageous to apply those techniques to reduce the
impulsive interference before reducing the bandwidth to
within the specifications of the device.

3 Impulsive Nature of Interchannel Interference in
Digital Communication Systems

[0143] Impulsiveness, or a high degree of peakedness, of
interchannel interference in digital communication systems
typically results from the non-smooth nature of any physi-
cally realizable modulation scheme designed to transmit a
discrete (discontinuous) message. Even modulation schemes
painstakingly designed to be ‘smooth’ are not. The non-
smoothness of the modulation can be caused by a variety of
hardware non-idealities and, more fundamentally, by the very
nature of any modulation scheme for digital communications.
In order to transmit a discrete message, such a scheme mustbe
causal and piecewise, and cannot be smooth, or infinitely
differentiable.
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[0144] Recursive differentiation of a non-smooth transmit-
ted signal eventually leads to discontinuities. When observed
by an out-of-band receiver, the transmissions from these dis-
continuities may appear as strong transients with the peak
power noticeably exceeding the average power, and the
received signal will have a high degree of peakedness. This
impulsive nature of the interference provides an opportunity
to reduce its power.

3.1 Demonstration Setup

[0145] Letus consider a simplified measuring setup shown
in FIG. 4. In the left-hand panel of the figure, the transmitter
emits a single 1.2 GHz tone with the amplitude modulated by
a random raised cosine-shaped 10 Mbit/s message. As illus-
trated in the upper right-hand panel, the total instantaneous
power of the in-phase and quadrature components of an in-
band quadrature receiver (Proakis and Manolakis, 2006) is
proportional to the squared modulating signal. However, as
shown in the lower right-hand panel, the total instantaneous
power in an out-of-band receiver tuned to 1 GHz is an impul-
sive pulse train with a multiple of 100 ns distance between the
pulses. Note that there is no apparent relationship between the
magnitude of the modulating signal and the magnitude of the
pulses.

[0146] Referring to a signal as impulsive implies that the
distribution of the instantaneous power of the signal has a
high degree of peakedness relative to some standard distribu-
tion, such as the Gaussian distribution. A common quantifier
of peakedeness would be, for instance, the excess kurtosis
(Abramowitz and Stegun, 1972). In this disclosure, however,
we adopt the measure of peakedness relative to a constant
signal as the “excess-to-average power” ratio, and use the
units “decibels relative to constant”, or dBc. This measure is
explained in Section 3.4.

3.2 Impulsive nature of interchannel interference

[0147] As shown in more detail in Section 3.6, the signal
components induced in a receiver by out-of-band communi-
cation transmitters can be impulsive. For example, if the
receiver is a quadrature receiver with identical lowpass filters
in the channels, the main term of the total instantaneous
power of in-phase and quadrature components resulting from
such out-of-band emissions may appear as a pulse train con-
sisting of a linear combination of pulses originating at dis-
crete times and shaped as the squared impulse response of
these filters. For a single transmitter, the typical intervals
between those discrete times are multiples of the symbol
duration (or other discrete time intervals used in the designed
modulation scheme, for example, chip and guard intervals).
The non-idealities in hardware implementation of designed
modulation schemes such as the non-smooth behavior of the
modulator around zero, also contribute to additional discrete
origins for the pulses. If the typical value of those discrete
time intervals is large in comparison with the inverse band-
width of the receiver, this pulse train will be highly impulsive.
[0148] The above paragraph can be restated using math-
ematical notations as follows. The total emission from vari-
ous digital transmitters can be written as a linear combination
of the terms of the following form:

x(D)=A (e, 34
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where w,, is the frequency of a carrier,

is dimensionless time, and A ,(t) is the desired (or designed)
complex-valued modulating signal representing a data signal
with symbol duration T. Let us assume that the impulse
response of the lowpass filters in both channels of a quadra-
ture receiver is

2
win) = — (D),

and that the order of filter is larger than n so that all derivatives
of w(t) of order smaller or equal to n-1 are continuous. (In
general, if n is the order of a causal analog filter, then n-1 is
the order of the first discontinuous derivative of its impulse
response.)

[0149]
order of the modulating signal A /(t) are finite, but the deriva-

Now let us assume that all derivatives of the same

tive of order n—1 of At) has a countable number of step

discontinuities at {t,}. One will encounter discontinuities in a
derivative of some order in the modulating signal sooner or
later, since any physical pulse shaping is implemented using
causal filters.) Then, if Aw=2mAf is the difference between the
carrier and the receiver frequencies, and the bandwidth of the
lowpass filter w(t) in the receiver is much smaller than Af, the
total power in the quadrature receiver due to x(t) can be
expressed as

1 N @35)
Vi Zw;h([— z;)Zj] @ -1))

i

for TAf >> 1,

where a, is the value of'the ith discontinuity of the order n-1
derivative of A (1),

a; = lim (A VG +2) - AP VE —o)] £0. (36)
£—

Equation (35) will still accurately represent the total power in
the quadrature receiver if the “real” (physical) modulating
signal can be expressed as A(t)=(t)* A (t), where the con-
volution kernel 1(t) is a low-pass filter of bandwidth much
larger than Af.

[0150] A typical value of't,, , —t, would be of the same order
of magnitude as T. If the reciprocal of this value is small in
comparison with the bandwidth of the receiver, the contribu-
tion of the terms oo, *h(t-t,)h(t-t;) for i=j is negligible, and
(35) describes an impulsive pulse train consisting of a linear
combination of pulses shaped as w*(t) and originating at {t,},
namely
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1 o (37
Pt Af) = WZ ol (2 ~ 1)

for sufficiently large T and Af.

[0151] This pulse train is illustrated in Panel I of FIG. 19,
which shows simulated instantaneous total power response of
quadrature receivers tuned to 1 GHz and 3 GHz frequencies
(gray and black lines, respectively) to an amplitude-modu-
lated 2 GHz carrier of unit power. The squared impulse
response of the lowpass filter in the receiver channels (30
MHz 5th order Butterworth filter (Schaumann and Van Valk-
enburg, 2001)) is shown in the upper right corner of the panel.
[0152] The modulating signal is shown in Panel II(a) of the
figure, and represents a random bit sequence at 10 Mbit/s
(T=100ns). In this example, a highly oversampled FIR raised
cosine filter (Proakis and Manolakis, 2006) with roll-off fac-
tor 0.35 and group delay 2T was used for pulse shaping. A
rather small group delay was chosen to make the discontinui-
ties in the derivative more visible in the figure. Panel II(b) of
FIG. 19 shows the first derivative of the modulating signal.
This derivative exhibits step discontinuities at the multiple of
T time intervals (at the time ticks), and thus n=2 in (35).
[0153] Itis important to notice that the impulsive pulse train
is not necessarily caused directly by the discontinuities in the
amplitude and/or phase of the transmitted signal, but rather by
the discontinuities in the higher order derivatives of the
modulating signal, and is generally unrelated to the magni-
tude of the envelope and/or the peak-to-average ratio of the
transmitted signal. Thus, for instance, continuous phase
modulation (CPM), while generally reducing the magnitude
of the impulsive interference by increasing the order of the
first discontinuous derivative by one, does not eliminate the
effect altogether. This is illustrated in Section 3.5.

[0154] When viewed as a function of both time and fre-
quency, the interpretation of (35) for the total power in a
quadrature receiver is a spectrogram (Cohen, 1995) in the
time window w(t) of the term x(t) of the transmitted signal.
Such a spectrogram is shown in the lower panel of FIG. 19,
where the horizontal dashed lines indicate the receiver fre-
quencies 1 GHz and 3 GHz used in Panel 1.

[0155] For a quantitative illustration of the impulsive
nature of the out-of-band interference, the upper panel of
FIG. 20 shows the peakedness of the instantaneous total
power in a quadrature receiver as a function of frequency for
the example used in FIG. 19. The peakedness of the out-of-
band signal exceeds the peakedness of the in-band signal by
over an order of magnitude.

[0156] The lower panel of FIG. 20 shows, for the same
examples, the total excess (solid line) and average (dashed
line) power in the receiver versus frequency. The excess
power of the out-of-band emissions is approximately 10 dB
higher than the average power.

[0157] Given the designed properties of the transmitted
signal, the out-of-band emissions can be partially mitigated
by additional filtering. For example, one can apply additional
high-order lowpass filtering to the modulating signal, or
band-pass filtering to the modulated carrier. However, the
bandwidth of those additional filters must be sufficiently large
in comparison with the bandwidth of the pulse shaping filter
in the modulator in order to not significantly affect the
designed signal. Within that bandwidth the above analysis

12
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still generally holds, and the impulsive disturbances may
significantly exceed the thermal noise level in the receiver
even when the average power of the interference remains
below that level.

3.3 Naturally Occurring Man-Made Source of
Impulsive Noise

[0158] Interchannel interference is a “naturally occurring
man-made” source of impulsive noise arising from non-
smoothness of modulation.

[0159] Non-smoothness of modulation can be caused by a
variety of hardware imperfections and, more fundamentally,
by the very nature of any modulation scheme for digital
communications. This non-smoothness sets the conditions
for the interference in out-of-band receivers to appear impul-
sive.

[0160] If the coexistence of multiple communication
devices in, say, a smartphone is designed based on the average
power of interchannel interference, a high excess-to-average
power ratio of impulsive disturbances may degrade perfor-
mance even when operating within the specifications.

[0161] On the other hand, the impulsive nature of the inter-
ference provides an opportunity to reduce its power. Since the
apparent peakedness for a given transmitter depends on the
characteristics of the receiver, in particular its bandwidth, an
effective approach to mitigating the out-of-band interference
can be as follows: (i) allow the initial stage of the receiver to
have a relatively large bandwidth so the out-of-band interfer-
ence remains highly impulsive, then (ii) implement the final
reduction of the bandwidth to within the specifications
through nonlinear means, such as the analog filters described
in (Nikitin and Davidchack, 2003, 2004, 2006 and 2007), and
(Nikitin, 2006, 2008, and 2009). In particular, intermittently
nonlinear filters described in Section 1 reduce the impulsive
component without detrimental effects on the transmitted
message and non-impulsive noise.

3.4 Excess-to-Average Power Ratio as Measure of
Peakedness

[0162] Consider a signal x(t). Then the measure K_ of its
peakedness in some time interval can be defined implicitly as
the excess-to-average power ratio

I — 1 38
(el - Kc]) = 3 38)

where 6(x) is the Heaviside unit step function, (...

); denotes averaging over the time interval, and x*(t)=x>(t)/
{x*(t)), is normalized instantaneous signal power. K _=1 for
x(t)=const, and thus K,z =101g(K ) expresses excess-to-av-
erage power ratio in units of “decibels relative to constant”.

[0163] For a Gaussian distribution, K., is the solution of

(39

| =

Vr
=

NSRS

r( ]:
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where I'(a, x) is the (upper) incomplete gamma function
(Gradshteyn and Ryzhik, 1994), and thus K _~2.366 (K ;5 ~3.
74 dBc).

3.5 Discontinuities in Continuous Phase Modulation

[0164] For continuous phase modulation (CPM), equation
(34) can be re-written as

()= (D=4 o TIN e (40)
where Af, is the frequency deviation. Then the derivative of
A t)is

A=A A7 (D), @D

and, if (xT("‘z)(E) contains discontinuities, so does AT(”‘l)({),
and the rest of the analysis of this disclosure holds.

3.6 Derivation of Equation (35)

[0165] Let us examine a short-time Fourier transform of a
transmitted signal x(t) in a time window

2,
w(r) = 7h(t)

which vanishes, along with all its derivatives, outside the
interval [0, oo . We will let the window function w(t) represent
the impulse response of an analog lowpass filter and be scaled
so that f, =1,

[0166] The short-time (windowed) Fourier transform X(t,
) of x(t) can be written as

X(t, w) = f dex(T)w([—T)e""‘” 42)

= w(D) = [x(ne ']
= w(t) = [x(1)cos(wr)] — iw(r) = [x(2)sin(wr)]

=1I(1, w) + iQ(1, w),

where the asterisk denotes convolution, and I(t,w) and Q(t,m)
can be interpreted as the in-phase and quadrature compo-
nents, respectively, of a quadrature receiver with the local
oscillator frequency w and the impulse response of lowpass
filters in the channels w(t).

[0167] Let us use the notation for dimensionless time as

-
I
~|Y

=

and consider a transmitted signal x(t) of the form
Xy, @3)
where . is the frequency of the carrier, and AI(E) is the

desired (or designed) complex-valued modulating signal rep-
resenting a data signal with symbol duration T.
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[0168]
ten as

The windowed Fourier transform of x(t) can be writ-

X, Aw) = r dTAT(DW( — 1) @4

_27r del A T deiAwr
—?E; T[A7(T) (I—T)]%m,

on
where T= —71
T

and Aw=2mAf 32 w_~w. Since w(t) and all its derivatives
vanish outside the interval [0, o[, consecutive integration by
parts leads to

" . g 45
X Af) = —(Tgf)” f e x ;LT”[AT(?)h(i R

__r — HTASIT (”] ()
= —(TAf)" fd‘re X n Ar T (T)

m=0

(=LK -7,

(ﬂ] n!
where =—
m (n—m)!m!

is a binomial coefficient (“n choose m”).

[0169] To analyze the relative contributions of the terms in
(45), let us first consider the case where all derivatives of
order smaller or equal to n—1 of the window function w(t) are
continuous, and all derivatives of the same order of the modu-

lating signal A /(1) are finite. but the derivative of order n—-1 of
A (1) has a countable number of step discontinuities at {t,}:

@ = hnol[A‘T"*“(i‘- +8) - ArIE — o)) £0. (46)
£

From (46), it follows that A,(t) has a piecewise continuous
component, as well as a singular component:

A(}” (1) = Z @;0(7 — 1;) + (piecewise continuous function of 7), “47)

where 3(x) is the Dirac d-function (Dirac, 1958).
[0170] Thesignificance of (47) lies in the sifting (sampling)
property of the Dirac d-function:

7 _dxd(x=30)(x)=h(xo) (48)

for a continuous h(x). Then substitution of (47) into (45) leads
to the following expression:

(49)
X, Af) =

AT | D ihe =TT

™
f dTe" ™7 x (continuous function of 7)|.
—c0

The second term in the square brackets is a Fourier transform
of'a continuous function, and it becomes negligible in com-
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parison with the first term as the product TAf increases. Thus,
for the total power P(t,Af) in a quadrature receiver,

Pt Af) = 1X(1, Af)P (50)

1 _ _
x— w;h([—t;)Z ah(i—1;)
(TAf)™ Z T

i

for TAf >> 1,

which is equation (35) of Section 3.2.

4 Real-Time Mitigation of Speckle Noise in
Coherent Imaging Systems

[0171] Ultrasound images provide the clinician with a valu-
able non-invasive, low cost, and real-time diagnostic tool.
However, although the human eye is able to derive the mean-
ingful information from these images, their usefulness is
impeded by the noise and artifacts. Specifically, ultrasonic
images (just like all coherent imaging systems) are generally
affected by multiplicative shot (or speckle) noise.

[0172] Typically, various methods of reduction of the
speckle noise involve non-real-time adaptive and non-adap-
tive speckle filtering of the acquired images, or multi-look
processing. The SPART filters of the present invention pro-
vide a simple and effective method for real-time mitigation of
speckle noise in ultrasound receivers, as well as other imaging
systems such as synthetic aperture radars. The SPART filters
can be employed in place of the corresponding linear filters in
the image acquisition circuit, such as the anti-aliasing filters
before the analog-to-digital converters (ADC), and the low-
pass filters in the control loops of the variable-gain amplifiers
(VGA). This is illustrated in FIG. 21, where the SPART filters
replace the anti-alias filter and the low-pass filter in the VGA
control (both highlighted in gray). FIG. 21 shows a single
transmit-and-receive channel for a typical phased-array
medical ultrasound imaging system, and is a modification of
FIG. 5 from the article “Optimizing Ultrasound-Receiver
VGA Output-Referred Noise and Gain” featured in Maxim’s
Engineering Journal, vol. 60.

5 Analog Rank-Based Nonlinear Filter with
Adjustable Range of Linear Behavior

[0173] Application of rank-based nonlinear filtering tech-
niques to processing of continuous signals meets with con-
siderable conceptual and practical difficulties. The highly
nonlinear nature of rank filters renders the term ‘frequency
response’ inadequate for their description and thus for the
design of signal processing systems incorporating such fil-
ters. Also, analog implementation of rank filters normally
requires delay lines, memory and/or clock circuits. Here we
describe a simple analog implementation, without such cir-
cuits, of a filter with an essential large signal behavior of a
rank filter in an exponential time window. This filter also
allows for adjustment of a range where the response of the
filter is equivalent to the response of an RC integrator. This
enables the design of higher-order filters which combine
desired frequency characteristics with such useful property of
rank filters as insensitivity to outliers (e.g., impulsive noise).

14
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We illustrate the performance of such filters in several repre-
sentative applications in comparison with ‘equivalent’ linear
filters.

5.1 Introduction

[0174] The benefits of the analog implementation of rank
filters, which offers real-time processing of continuous-time
signals and might lead to simpler circuits with large power
and area savings, are widely recognized (see, for example,
(Paul and Hiiper, 1993; Opris, 1996; Ferreira, 2000; Nikitin
and Davidchack, 2003)). A generally adopted approach to
such implementation is to mimic the digital filter in that a
‘sorting’ of continuous signal is implemented, usually by
chopping the signal into chunks using a sequence of delay
lines followed by a sorting circuit (see, for example, (Vlassis
etal., 2000; D iaz-Sanchez et al., 2004)).

[0175] Earlier publications (Nikitin and Davidchack, 2003,
2004) proposed an analog implementation of rank filters
based on the probabilistic definition of order statistics,
namely that the g” order statistic, X p Of arandom variable x
with a given cumulative distribution function ®(X):=P(x<X)
is defined implicitly by the equation

DX, 0=¢=1. 1)

For example, X , is the median of x.

[0176] For acontinuous time signal x(t) in the time interval
te[0,T1], the function analogous to the cumulative distribution
function can be introduced. It is defined as the fraction of time
the signal x(t) is below a threshold value D. With the help of
the Heaviside unit step function 6(x), this definition can be
expressed as follows:

17 52)
®(D)= f di0[D - x(1)].
0

This expression can be generalized for a continuous signal
within an arbitrary moving time window w(t):

DD,N="_, dsw(t—s)0[D-x(s)|=w(®)*0[ D-x(?)], (53)

where w(t)=0, [dtw(t)=1, and the asterisk denotes convolu-
tion. In practice, it might be more convenient to use a sign
(signum) function sgn(x)=20(x)-1 instead of the Heaviside
unit step function. Therefore, it is useful to define a shifted
function

D(D,,0)=w(t)*sgn[D-x(2)].

[0177] By analogy with (51), we can use (54) to define the
output of a rank filter of order q as follows:

(54

DD, (1), 1]=w(@)*sgn[D ~x(1)]=29-1,0=¢=1. (55

5.2 Practical Approximation of Rank Filter in
Exponential Time Window

[0178] The definitions of analog rank filters in arbitrary
continuous time windows, and derivations of general formu-
lae for their various implementations can be found elsewhere
(see, for example, (Nikitin and Davidchack, 2003; Nikitin et
al., 2003; Nikitin and Davidchack, 2004; Nikitin, 2006, 2008,
and 2009; Nikitin and Davidchack, 2006 and 2007)). Here we
describe a simple practical approximation to a rank filterin an
exponential time window, suitable for analog implementation
without delay lines, memory and/or clock circuits.
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[0179] Note that, in equation (51), sgn(x) is a discontinuous
function and thus cannot be implemented in an analog circuit.
Instead of sgn(x), let us use the following comparator func-

tion F x):

F(x+06x) < F(x) for 6x >0 and any x, (56)
F 0 ==F(-x),
Flx) = gx for |a] < (1 —s)g’lS and 0 <e<<1,

lim F(x) = S.

That is, F (x) is a strictly increasing odd function with hori-
zontal asymptotes +S which is linear for IxI<(1-€)g™'S~g~'S.
(Note that g>0.) This can be a reasonable approximation to,
for example, an operational amplifier with gain g and active
output clamping at =S. It is convenient to denote AD=g~*S as

the resolution of the comparator function F (x). Also note

that lim, s~ F (x)=lim,, ,oS™ F (x)=sg(x).

[0180] Substitution of (56) into equation (55) leads to
@(Dq,z):S’lw(z)*]? D,~x()]=29-1, (57)

and if the input and output signals satisfy the condition ID -
x(t)I<AD, equation (57) can be rewritten as a small signal
approximation

D ()=w(t)*x(1)+(2g-1)AD (for ID,~x(0)|<AD). (58)
[0181] Now, let us assume that w(t) is an exponential time

window represented by the impulse response of an RC inte-
grator with RC=t, namely by

e (59

5
T

w(D) = he(2) = 0(1)

where 0(t) is the Heaviside unit step function, and thus the
time derivative of w(t) can be expressed as

1 (©60)
W) =~ [80) = A (0],

where 9(t) is the Dirac delta function. Using equation (60), the
expression for a rank filter given by equation (57) can be
re-written in an explicit (albeit integro-difterential) form,
namely as (see Nikitin and Davidchack, 2003, 2004, for
example)

Dy (2g- 1S - F[D, —x(0)] 61

- d N
Td—Dq{hr(l‘)*T[Dq -x(01}

[0182] Finally, let us consider two rank filters of orders
qx0q, 0<6q=<<I,

h'l:(z)*fDq:—x(l)]:(2q1:26q)S. (62)
[0183] Clearly, since F (x) is a strictly increasing continu-

ous fur}ction, D, <D, and limg, .,(D,,-D, )=0. Thus we
can write:
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(D)= F [Dge — 2] - 63)
d . = F[Dy —x(0)]
d—Dq{hr(f) = F Dy~ x(t)]} = 61;% W
. 456q
= lim
8q-0 Dgy — Dy
N 456
¥ D0 - Dy (1)’
and
1 (64)
Dy(0) = 5[Dgr (1) + Dy (1),

where D_(t) is the output of a rank filter of order q. Combining
equations (61), (63) and (64), we arrive at the following
approximation to a rank filter in a continuous exponential
time window ht(t):

1 (65)
Dy() = E[Dm(l) + Dy (D],

1 1
— | dt

e | 51T 130 = Dau 0]+ Vo (g () = Dy IG),

V. =Qg-1+£2095.G=A—C -4 RC
x =T L2000, = 41S0q ~ Vg =V, 77

where the constants RC and A are introduced in relation to the
implementation of this approximation in a feedback circuit,
as discussed in the section that follows. For convenience, we
will further refer to such a circuit as Single Point Analog Rank
Tracker (SPART), where ‘single point” emphasizes the fact
that only current instantaneous value of the input signal x(t)
enters the filter equation.

5.3 Operational Amplifier Implementation of SPART

[0184] In the comparators shown in FIG. 22, simple diode
clamping is used to limit the output at about £S. The func-
tional description of the output of such a comparator can be
given in terms of the Lambert W-function as

glxl (66)

fx)=—-gx+ xOW[g:exp(K)]sgn(x),

X

where o=Lr, and x,=nV ;. (I, and n are the diode saturation
current and ideality factor, respectively, and V . is the thermal
voltage, V,=25.85 mV at 300 K.) Thus this comparator func-
tion can be approximated by equation (56), where g is the
small signal gain (set by the ratio of the feedback and the input
resistors), and S is approximately the diode ‘saturation’ volt-
age (that is, the forward voltage at large current). In practice,
for g>>1, S can be approximated by

.1 %0
S =xosinh ' =
a

(see FIG. 23).
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[0185] Note that, for g=1/2 (median mode), the value of S
does not affect T and/or q, and thus the change of S with
temperature will have little impact on the overall performance
of SPART.

5.4 Simplified Rank Tracker with Adjustable Range
of Linear Behavior (FrankenSPART)

[0186] For small signals such that equation (58) is valid, we
can rewrite equation (65) as

1 . 1 RC 67
D,(0) = R_Cfm{f[x(z) - Dy(0] + V) 67

g T

where V_=(29-1)S, and for such signals filters defined by
equations (65) and (67) are equivalent. However, as can be
easily seen, the output of the filter given by equation (67) is
slew rate limited, 25(q-1)=gtP_(t)=2Sq, as opposed to the
filter given by equation (65), which imposes no limitations on
the convergence rate.

[0187] Now the small signal condition can be written as

d (68)
2(g-Du< 7 [Ac (1) = x(0)] < 2gp,

where u=(gt)~*S. Thus, an input signal x(t) of the filters given
by equations (65) and (67) is small if, given the same input,
the slew rate of the output of an RC integrator with RC=t is
limited according to equation (68).

5.5 Operational Amplifier Implementation of
FrankenSPART

[0188] FIG. 24 provides an example of implementation of
FrankenSPART using operational amplifiers. The filter
parameters can be expressed as follows:

€9

1
Time constant: 7= —RC
gG

S1 1t ter: 4 =G—;
ew rate parameter: i RC

Comparator resolution AD = — = ur
g

Ve

1
tile parameter. g = = + —,
Quantile p eter: g T

20— Dp < Dg(t) =2gp

5.6 Median Mode FrankenSPART in Comparison
with First Order Lowpass RC Filter and Slew Rate
Limiting Filter

[0189] An important special case of a FrankenSPART con-
figuration is the median mode (q=1/2). This mode is achieved
by setting V_=0 in equation (67). In the subsequent discus-
sions it will be assumed by default that a FrankenSPART
circuit operates in the median mode unless explicitly speci-
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fied otherwise. In the median mode, the only two remaining
parameters of FrankenSPART are its time constant T and slew
rate parameter L.

[0190] As follows from equation (58), a small signal
response of a FrankenSPART circuit in median mode is
equivalent to a first order low pass RC filter with RC=t. We
will further refer to the latter as the ‘RC filter’, or ‘RC circuit’,
and assume, for comparison with FrankenSPART, the equal-
ity RC=r, where T is the time constant of the FrankenSPART
circuit.

[0191] For large signals, the (median) FrankenSPART cir-
cuit limits the slew rate of the output to p=(gt)~'S, and thus is
equivalent to a ‘purely’ slew rate limiting filter. For compari-
son with FrankenSPART, a purely slew rate limiting filter can
be constructed as another FrankenSPART filter with the same
slew rate | but much smaller time constant, dt<<t.

[0192] We will now proceed to compare the Fran-
kenSPART with these two filters which manifest the limiting
behavior of the FrankenSPART circuit. We will perform such
comparison by considering the following examples: (1) the
total power response to a harmonic signal at various frequen-
cies, (2) the nonlinear distortions of a harmonic signal at
selected frequencies, (3) the response to ‘rectangular’ (box-
car) pulses of various amplitudes and durations, and (4) the
response to white noise of different bandwidth, total power,
and impulsivity. This comparison shall provide us with some
general guidelines of the FrankenSPART usage in various
telecommunication and data acquisition systems.

5.6.1 Attenuation of Harmonic Signals

[0193] It can be easily shown that, given a harmonic input
with the amplitude A, the maximum slew rate of the output of
an RC filter is A/RC. Thus signals below this ‘critical” ampli-
tude will satisfy the small signal condition of equation (58),
and the FrankenSPART filter will be equivalent to the RC
filter for those signals. In terms of the parameters of the
median mode FrankenSPART, the critical amplitude can be
expressed as . FIG. 25 illustrates our earlier statement that
the FrankenSPART response to small signals is equivalent to
that of a first order low pass RC filter with RC=t, while its
response to large signals is approaching that of a slew rate
limiting filter.

5.6.2 Nonlinear Distortions of Harmonic Signals

[0194] FIG. 26 illustrates the absence of nonlinear distor-
tions of harmonic signals with the amplitude below critical
when filtered by the FrankenSPART circuit. For comparison,
FIG. 27 shows nonlinear distortions of harmonic signals with
critical amplitude by the slew rate limiting filter. Notice that,
since the output of the filter is symmetrical, only odd harmon-
ics are present.

[0195] FIG. 28 provides another comparison of nonlinear
distortions of harmonic signals with critical amplitude by the
FrankenSPART and slew rate limiting filters.

5.6.3 Attenuation of ‘Rectangular’ (Boxcar) Pulses

[0196] FIG. 29 shows the response of FrankenSPART to
boxcar pulses of various height and duration in comparison
with the response of an RC circuit (top three panels) and a
slew rate limiting circuit (bottom three panels). In all panels,
the gray lines correspond to the input boxcar pulses, the solid
black lines correspond to the FrankenSPART output, the
dashed lines correspond to the RC and slew rate limiting
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circuits, left and right respectively. One can see that the
attenuation of boxcar pulses by FrankenSPART is signifi-
cantly higher then by the RC filter for large pulses, and higher
then by the slew rate limiting filter for small pulses. As can be
seen in FIG. 30, FrankenSPART attenuates boxcar pulses
with amplitudes up to pt as effectively as a linear RC filter,
and more effectively then a slew rate limiting filter (especially
for the pulses narrower than ). For puses of any width with
amplitudes larger than pt, the FrankenSPART circuit has
much stronger attenuation than the linear filter. For large
pulses of widths greater than T, FrankenSPART’s attenuation
is roughly equivalent to that of the slew rate limiting filter.
Thus one can conclude that an overall performance of the
FrankenSPART circuit in suppression of boxcar pulses is
better than either the RC integrator or the slew rate limiting
filter.

5.6.4 Response to White Noise of Different Total
Power and Impulsivity

[0197] FIGS. 31 and 32 provide yet another illustration that
the FrankenSPART response to small signals is equivalent to
that of a first order low pass RC filter with RC=t, while its
response to large signals is approaching that of a slew rate
limiting filter.

5.7 General Use of SPART/FrankenSPART in
Filtering Applications

[0198] As was discussed earlier, the SPART and Fran-
kenSPART circuits behave like RC circuits for the signals
within a certain slew rate range, and thus they can be used as
a real pole in any linear filter with such a pole. For example,
a FrankenSPART circuit followed by a Sallen-Key stage (see
Sallen and Key, 1955, for example) can implement a filter
which acts like a third order Butterworth filter for signals
within a specified slew rate range, but is insensitive to outliers
(resistant to impulsive noise).

[0199] Note that, as was discussed earlier, suppression of
impulsive noise by the SPART and FrankenSPART circuits is
much better for narrow pulses, and thus a SPART/Fran-
kenSPART circuit should be the first stage in such a filter in
order not to limit the bandwidth of the noise.

5.7.1 Examples of Impulsive Noise

[0200] In general, the amplitude distribution of impulsive
noise is a heavy-tailed distribution, such as, for example, the
Student’s t-distribution or one of the Stable Distribution fam-
ily.

[0201] There are numerous sources of impulsive noise. For
example, common electrical impulsive noise is shot noise.
Multiplicative noise is typically impulsive. Also, even though
white Gaussian noise is not impulsive, product of any number
of white Gaussian noises is impulsive. Thus impulsive noise
would commonly occur in all nonlinear electronic circuits
such as, for example, modulators, since nonlinearity implies
multiplication.

[0202] A ‘telegraph’(square wave) signal filtered by a high-
pass filter will produce short duration pulses which can con-
stitute impulsive noise.
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[0203] The signal components induced in a receiver by
out-of-band communication transmitters can be impulsive.

5.7.2 Suppression of Impulsive Noise in Broadband
Applications

[0204] FIGS. 33 and 34 illustrate, in time and frequency
domains, respectively, attenuation of impulsive white noise
by FrankenSPART in a broadband signal. In the examples, the
noise bandwidth is approximately ten times the bandwidth of
the corresponding linear RC filter, and its index of stability
(characteristic exponent) is a=2 (Gaussian), 1.75, and 1.5. In
all panels, the gray lines show the input signal, the solid black
lines show the FrankenSPART output, and the dashed lines
show the output of the RC filter. In the example, the power
signal to noise ratio of the unfiltered noisy signal is main-
tained constant.

5.7.3 Using SPART and FrankenSPART for
Demodulation

[0205] FIG. 35 provides an example of using SPART (or
FrankenSPART) in demodulation of a binary phase-shift key-
ing (BPSK) signal. Panel I shows that, for a noise-free signal,
replacement of an RC filter in the bandpass filter at the inter-
mediate frequency of a superheterodyne receiver does not
affect the performance of the receiver. However, as shown in
Panel 11, the SPART-based receiver greatly improves the per-
formance in the presence of high intensity impulsive noise.

5.8 Using SPART and FrankenSPART as
Non-Median Rank Filters

5.8.1 Establishing LORAN Threshold Above Noise
Floor with FrankenSPART Circuit

[0206] A FrankenSPART circuit with the quantile param-
eter g=1/2 can be used to establish the noise floor for a
navigation signal such as LORAN. For example, for q=3/4
(third quartile), the output of a FrankenSPART circuit will be
ut/2 for alow level noise (that is, the noise with rms o, below

ut/2), and will be approaching Gn\/ierf‘l(l&) for a high
level noise (see FIG. 36). The example in FIG. 37 shows
several LORAN pulses protruding from the noise, and the
threshold levels established by a FrankenSPART circuit with
1=3.4 ms and p=2 V/s, and a RMS circuit with the same time
constant as the FrankenSPART. (Each circuit is followed by
an RC integrator with RC=t and the gain 6 and 4, respec-
tively.)

[0207] From FIG. 37, one can see that the output of the
FrankenSPART threshold circuit is largely unaffected by the
signal pulses (and thus is immune to the cross rate interfer-
ence), or by high level outliers such as lightning.

6 Method for Signal Sampling
6.1 Synopsis

[0208] Multimodal Pulse Shaping Given an input signal,
one can construct a simple analog network to output a filtered
output signal x(t) (‘prime signal’) along with any number of
the signals proportional to any order time derivatives of the
output signal (‘derivative signals’),
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n

- d
%x(t),

or any linear combination of the derivatives. For a bandlim-
ited signal, this can be done with or without affecting the
bandwidth of the input signal. An example of a circuit for
obtaining the prime and the first two derivative signals is
given in FIG. 38. FIG. 39 shows the prime (solid line) and the
first two derivative (dashed and dotted lines, respectively)
outputs of the circuit shown in FIG. 38.

[0209] Sampling at zero crossings or other values of modes
In multimodal pulse shaping, zero crossings t; of a mode of
order n correspond to the extrema of the mode of order n-1.
Thus one can use such zero crossings to construct a (non-
periodic) Dirac comb 2,8(t—t,) to sample the prime and the
derivative signals at the points where certain time derivatives
of the prime signal either vanish (for example, at stationary
and inflection points), or take certain range of values

[0210] Reconstruction by polynomial interpolation The
knowledge, in addition to the prime signal values, of the
derivatives at the sampling times allows one to construct a
polynomial interpolation (for example, using Hermite poly-
nomials) with well defined boundary conditions. This allows,
for example, construction of high order monotone polyno-
mial interpolations without preprocessing. For instance, sam-
pling the prime signal values at stationary points (that is, at
zero control tangents of cubic Hermite splines) allows mono-
tone cubic interpolation through stationary points, while sam-
pling the prime signal values at stationary and inflection
points and sampling the values of the first derivative signal at
the inflection points allows monotone cubic interpolation
through both stationary and inflection points

[0211] Imposing additional constraints Various additional
constraints can be imposed on the sampling, enabling sentient
acquisition of nonlinear and nonstationary signals. Such con-
straints can be applied to the values of the sampled modes
(e.g., sampling only at certain threshold crossings of difterent
modes), or to the sampling times (e.g., introducing extended
ornonextended dead time into the process of generation of the
Dirac comb). For instance, sampling the prime signal at the
downward zero crossings of the first derivative signal allows
one to obtain the upper envelope of the prime signal, while
sampling at the upward zero crossings provides the lower
envelope

6.1.1 Example of Dead Time Constraints on
Sampling at Stationary and Inflection Points

[0212] Please note that a particular formulation of the algo-
rithm can take various different in the language but equivalent
forms, and the order of the steps in a particular implementa-
tion can vary to a degree without affecting the outcome.

(1) Generate prime timing pulses t, (pulse train >,(t-t,)) from
zero crossings of the first derivative signal, and generate the
prime dead time condition signal from the timing pulses t, (for
example, as the signal 1-2[0(t-t,)-0(t+t,~t,)], where the
zero values correspond to the times affected by a prime non-
extended dead time t )

(2) Generate intermediate timing pulses t'; from zero cross-
ings ofthe second derivative signal under the prime dead time
condition of step (1) (e.g., as Z,8(t-t,){1-Z,[6(t-t,)-O(t+t,~
t,)]}, where t; are the zero crossings of the second derivative
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signal), and generate the secondary dead time condition sig-
nal from the intermediate timing pulses t';

(3) Generate secondary timing pulses t; by imposing the sec-
ondary dead time condition of step (2) on the intermediate
timing pulses t'; of step (2) (that is, by applying the secondary
dead time condition signal of step (2) to the pulse train 2,3
(t-t)

(4) Obtain samples x,=x(t;) and x,=x(t,) of the prime signal at
the prime times t, of step (1) and the secondary times t, of step
(3), and obtain samples %, =tx(t ) of the first derivative signal
at the secondary times t, of step (3)

[0213] FIG. 40 provides an example of sampling according
to the algorithm of Section 6.1.1. The incoming prime signal
is shown by the gray lines, the samples are shown by the dots,
and the black lines show the signals reconstructed by cubic
splines. The ticks at the x-axis indicate the sampling times.

7 Method for Low Frequency Terrestrial Navigation

[0214] Using a LORAN-C receiver as an example, we
describe a method for low frequency terrestrial navigation.
[0215] This method enables the development of simple,
low cost, low electrical and computational power, passive
terrestrial navigation systems based on a low frequency car-
rier and narrow bandwidth pulses. A receiver for such a sys-
tem can be implemented in an inexpensive analog IC and
incorporated in a handset without a noticeable increase in
consumption of the handset’s power and computational
resources.

7.1 Technology Elements

7.1.1 Bimodal Pulse Shaping (BPS) and Signal Sam-
pling at Extrema

[0216] Let us consider two signals which we shall call, for
convenience, a prime signal and an auxiliary signal, such that
the auxiliary signal is proportional to the first time derivative
of the prime signal. Then, by definition of an extremum, the
times of local maxima in the prime signal are equal to the
times of downward zero crossings in the auxiliary signal. If
we denote the prime and the auxiliary signals as x(t) and Tx(t),
respectively, then the signal y(t) defined as

yO=8[x(1)-Dj6[~wi@)],

where 0(x) is Heaviside unit step function, will consist of
non-overlapping rectangular (‘box-car’) pulses of unit ampli-
tude with the onsets (front edges) of the pulses located at the
times of the maxima of the prime signal x(t) above the thresh-
old D. This is illustrated in FIG. 41.

[0217] In practice, a step function can be easily imple-
mented by a comparator, and a product of two step functions
can be realized by an analog AND gate.

[0218] An example of a circuit which can be used to con-
struct prime and auxiliary signals from a given input signal
x,(t) is shown in FIG. 42.

[0219] Note that the timing accuracy of the BPS is propor-
tional to the slew rate of the auxiliary signal around zero
crossings. Thus this accuracy can be increased by using an
auxiliary signal which is an even function of the derivative of
the prime signal, such that the first derivative of this function
has a sharp extremum at zero. An example of such a function
can be, for example, an inverse hyperbolic tangent, as illus-

(70)
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trated in FIG. 43. FIG. 44 provides an example of a BPS
circuit with increased slew rate of zero crossings by the aux-
iliary signal.

7.1.2 Establishing LORAN Threshold Above Noise
Floor with FrankenSPART Circuit

[0220] A FrankenSPART circuit with the quantile param-
eter g=1/2 can be used to establish the noise floor for a
navigation signal such as LORAN. For example, for q=3/4
(third quartile), the output of a FrankenSPART circuit will be
ut/2 for alow level noise (that is, the noise with rms o, below

ut/2), and will be approaching Gn\/ierf' Y(1/2) for a high
level noise (see FIG. 36). The example in FIG. 37 shows
several LORAN pulses protruding from the noise, and the
threshold levels established by a FrankenSPART circuit with
1=3.4 ms and p=2 V/s, and a RMS circuit with the same time
constant as the FrankenSPART. (Each circuit is followed by
an RC integrator with RC=t and the gain 6 and 4, respec-
tively.)

[0221] From FIG. 37, one can see that the output of the
FrankenSPART threshold circuit is largely unaffected by the
signal pulses (and thus is immune to the cross rate interfer-
ence), or by high level outliers such as lightning.

7.1.3 Monotonic Nonlinear Amplification of Prime
Signal

[0222] In addition to improving the timing accuracy, the
precision of amplitude measurements can be increased by
‘flattening’ the maxima of the prime signal above a threshold
thorough using an appropriate monotonic nonlinear transfor-
mation. If, for example, a logarithmic transformation is used,
it will also extend the dynamic range of the amplitude mea-
surements. This is illustrated in FIG. 45. In the figure, the
positive part of the prime signal is proportional to the loga-
rithm of the ratio of the prime signal x(t) before the transfor-
mation and the threshold D. FIG. 46 shows an example of a
circuit for logarithmic transformation of the prime signal.
[0223] Bimodal pulse shaping enables coherent signal
sampling, which leads to many benefits discussed later in this
disclosure. In addition, it reduces (in combination with the
sensibly established threshold) the data storage and process-
ing needs by at least an order of magnitude, and increases
accuracy and precision since the samples are taken only at the
stationary points of the prime signal. Also, nonlinear BPS
further improves precision and extends the dynamic range of
the amplitude measurements.

7.1.4 Receiver Block Diagram

[0224] A simplified block diagram of a receiver is shown in
FIG. 47.
[0225] The signal to host processor consists of a sequence

of time values of the occurrence of the peaks above the Fran-
kenSPART threshold (established as a [3-gained third quartile
output of the FrankenSPART filter), represented by n-bit
numbers.

7.2 Post-Processing by Host DSP

[0226] The prototype LORAN receiver and receiver system
shown in FIG. 47 implement coherent data sampling of only
the time values of the signal peaks above the noise threshold.
This reduces the data storage and processing needs by at least
an order of magnitude, and increases timing accuracy since
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the samples are taken only at the stationary points ofthe prime

signal. It also increases accuracy, precision, and resistance to

noise by enabling post-processing based on order statistics.

[0227] After obtaining a record of said time values for a

duration of at least several Group Repetition Intervals (GRIs),

through post-processing by the host processor, we can then
complete the tasks including, but not limited to, the follow-
ing:

[0228] (1) for each GRI chain, detect and identify the mas-
ter and the slaves;

[0229] (2) for each pulse group, construct a resulting single
pulse synchronized with said pulse group;

[0230] (3) obtain the times of occurrence (as modulo GRI
values) of any individual peak in said resulting single
pulse;

[0231] (4)obtain the deviations of said times of occurrence;

[0232] (5) obtainthe signs (polarity), and the amplitudes of
said individual peaks;

[0233] (6) identify corresponding individual peaks in dif-
ferent single pulses synchronized with different pulse
groups;

[0234] (7) obtain time delays between said corresponding
individual peaks in different single pulses synchronized
with different pulse groups;

[0235] (8) synchronize different GRI chains with each
other, and
[0236] (9) obtain time delays between corresponding indi-

vidual peaks in different single pulses synchronized with
different pulse groups in different GRI chains.

ARTICLES OF MANUFACTURE

[0237] Various embodiments of the invention may include
hardware, firmware, and software embodiments, that is, may
be wholly constructed with hardware components, pro-
grammed into firmware, or be implemented in the form of a
computer program code.

[0238] Still further, the invention disclosed herein may take
the form of an article of manufacture. For example, such an
article of manufacture can be a computer-usable medium
containing a computer-readable code which causes a com-
puter to execute the inventive method.
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[0260] Regardingthe invention being thus described, it will
be obvious that the same may be varied in many ways. Such
variations are not to be regarded as a departure from the spirit
and scope of the invention, and all such modifications as
would be obvious to one skilled in the art are intended to be
included within the scope of the following claims.

I claim:

1. A method for signal processing characterized by a quan-
tile parameter, a slew rate parameter, and a time parameter,
and transforming an input signal into a filtered output signal,
consisting of the following steps:

(a) applying a comparator to the difference of the input
signal and a feedback of said output signal, where said
comparator is characterized by a resolution parameter
and said resolution parameter is proportional to the
product of the time parameter and the slew rate param-
eter;

(b) forming a linearly transformed output of said compara-
tor by multiplying said output of the comparator by a
value proportional to said slew rate parameter, and add-
ing an offset value indicative of said quantile parameter;
and

(c) integrating said linearly transformed output of the com-
parator to obtain said filtered output signal.

2. A method for mitigation of a sparse interference affect-

ing an input signal, method consisting of the following steps:

(a) identifying the range of the difference between the input
signal without sparse interference and the response of a
linear filter with known characteristics to said input sig-
nal without sparse interference;

(b) configuring an intermittently nonlinear circuit which
monitors the difference of the feedback of its output and
the input signal and has a response of said linear filter
when said difference is within said range, and has a
response mitigating said sparse interference when said
difference is outside of said range.
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