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(57) ABSTRACT

Various components of the present invention are collectively
designated as Analysis of Variables Through Analog Rep-
resentation (AVATAR). It is a method, processes, and appa-
ratus for measurement and analysis of variables of different
type and origin. AVATAR offers an analog solution to those
problems of the analysis of variables which are normally
handled by digital means. The invention allows (a) the
improved perception of the measurements through geo-
metrical analogies, (b) effective solutions of the existing
computational problems of the order statistic methods, and
(c) extended applicability of these methods to analysis of
variables.

The invention employs transformation of discrete or con-
tinuous variables into normalized continuous scalar fields,
that is, into objects with mathematical properties of density
and/or cumulative distribution functions. In addition to
dependence on the displacement coordinates (thresholds),

these objects can also depend on other parameters, including
spatial coordinates (e.g., if the incoming variables are them-
selves scalar or vector fields), and/or time (if the variables
depend on time). Moreover, this transformation of the mea-
sured variables may be implemented with respect to any
reference variable. Thus, the values of the reference variable
provide a common unit, or standard, for measuring and
comparison of variables of different natures, for assessment
of mutual dependence of these variables, and for evaluation
of changes in the variables and their dependence with time.

The invention enables, on a consistent general basis, a
variety of new techniques for analysis of variables, which
can be implemented through various physical means in
continuous action machines as well as through digital means
or computer calculations. Several of the elements of these
new techniques do have digital counterparts, such as some
rank order techniques in digital signal and image processing.
However, this invention significantly extends the scope and
applicability of these techniques and enables their analog
implementation. The invention also introduces a wide range
of signal analysis tools which do not exist, and cannot be
defined, in the digital domain. In addition, by the present
invention, all existing techniques for statistical processing of
data, and for studying probability fluxes, are made appli-
cable to analysis of any variable.

81 Claims, 67 Drawing Sheets
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TECHNICAL FIELD

The present invention relates to methods, processes and
apparatus for measuring and analysis of variables, provided
that the definitions of the terms “variable” and “measuring”
are adopted from the 7th edition of the International Patent
Classification (IPC). This invention also relates to generic
measurement systems and processes, that is, the proposed
measuring arrangements are not specially adapted for any
specific variables, or to one particular environment. This
invention also relates to methods and corresponding appa-
ratus for measuring which extend to different applications
and provide results other than instantaneous values of vari-
ables. The invention further relates to post-processing analy-
sis of measured variables and to statistical analysis.

BACKGROUND ART

In a broad sense, the primary goal of a measurement can
be defined as making a phenomenon available for human
perception. Even when the results of measurements are used
to automatically control machines and processes, the results
of'such control need to be meaningful, and thus the narrower
technical meanings of a measurement still fall under the
more general definition. In a technical sense, measurement
often means finding a numerical expression of the value of
a variable in relation to a unit or datum or to another variable
of the same nature. This is normally accomplished by
practical implementation of an idealized data acquisition
system. The idealization is understood as a (simplified)
model of such measuring process, which can be analyzed
and comprehended by individuals. This analysis can either
be performed directly through senses, or employ additional
tools such as computers. When the measurement is reduced
to a record, such record is normally expressed in discrete
values in order to reduce the amount of information, and to
enable storage of this record and its processing by digital
machines. The reduction to a finite set of values is also
essential for human comprehension. However, a physical
embodiment of an idealized data acquisition system is
usually an analog machine. That is, it is a machine with
continuous action, where the components (mechanical appa-
ratus, electrical circuits, optical devices, and so forth)
respond to the input through the continuously changing
parameters (displacements, angles of rotation, currents, volt-
ages, and so forth). When the results of such implementation
are reduced to numerical values, the uncertainties due to
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either limitations of the data acquisition techniques, or to the
physical nature of the measured phenomenon, are often
detached from these numerical values, or from each other.
Ignoring the interdependence of different variables in the
analyzed system, either intrinsic (due to their physical
nature), or introduced by measuring equipment, can lead to
misleading conclusions. An example of such idealization of
a measurement is its digital record, where the measurement
is represented by a finite set of numbers. It needs to be
pointed out that the digital nature of a record is preserved
even if such record were made continuous in time, that is,
available as a (finite) set of instantaneous values.

Generally, measurement can be viewed as transformation
of the input variable into another variable such that it can be
eventually perceived, or utilized in some other manner.
Measurement may consist of many intermediate steps, or
stages between the incoming variable and the output of the
acquisition system. For example, a TV broadcast can sim-
plistically be viewed as (optical) measurement of the inten-
sity of the light (incoming variable). where the output
(image) is displayed on a TV screen. The same collectively
would be true for a recorded TV program, although the
intermediate steps of such a measurement will be different.

Regardless of the physical nature of measuring processes,
they all exhibit many common features. Namely, they all
involve transformation and comparison of variables at any
stage. Transformation may or may not involve conversion of
the nature of signals (for instance, conversion of pressure
variations into electric signals by a microphone in acoustic
measurements), and transformation can be either linear or
nonlinear. Most transformations of variables in an acquisi-
tion system involve comparison as the basis for such trans-
formations. Comparison can be made in relation to any
external or internal reference, including the input variable
itself. For example, simple linear filtering of a variable
transforms the input variable into another variable, which is
a weighted mean of the input variable either in time, space,
or both. Here the comparison is made with the sample of the
input variable, and the transformation satisfies a certain
relation, that is, the output is the weighted average of this
sample. An example of such filtering would be the compu-
tation of the Dow Jones Industrial Average.

In measurements of discrete events, a particular nonlinear
filtering technique stands out due to its important role in
many applications. This technique uses the relative posi-
tions, or rank, of the data as a basis for transformation. For
example, the salaries and the family incomes are commonly
reported as percentiles such as current median salary for a
certain profession. The rationale for reporting the median
rather than the mean income can be illustrated as follows.
Consider some residential neighborhood generating ten mil-
lion dollars annually. Now, if someone from this neighbor-
hood wins twenty millions in a lottery, this will triple the
total as well as the mean income of the neighborhood. Thus
reporting the mean family income will create an illusion of
a significant increase in the wealth of individual families.
The median income, however, will remain unchanged and
will reflect the economic conditions of the neighborhood
more accurately. As another simple example, consider the
way in which a student’s performance on a standardized test
such as the SAT (Scholastic Aptitude Test) or GRE (Gradu-
ate Record Examination) is measured. The results are pro-
vided as a cumulative distribution function, that is, are
quoted both as a “score” and as the percentile. The passing
criterion would be the score for a certain percentile. This
passing score can be viewed as the output of the “admission
filter”.
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In digital signal processing, a similar filtering technique is
commonly used and is referred to as rank order or order
statistic filtering. Unlike a smoothing filter which outputs a
weighted mean of the elements in a sliding window, a rank
order filter picks up an output according to the order statistic
of elements in this window. See, for example, Arnold et al.,
1992, and Sarhan and Greenberg, 1962, for the definitions
and theory of order statistics. Maximum, minimum, and
median filters are some frequently used examples. Median
filters are robust, and can remove impulse noise while
preserving essential features. The discussion of this robust-
ness and usefulness of median filters can be found in, for
example, Arce et al., 1986. These filters are widely used in
many signal and image processing applications. See, for
example, Bovik et al., 1983; Huang, 1981; Lee and Fam,
1987. Many examples can be found in fields such as seismic
analysis Bednar, 1983, for example, biological signal pro-
cessing Fiore et al., 1996, for example, medical imaging
Ritenour et al., 1984, for example, or video processing
Wischermann, 1991, for example. Maximum and minimum
selections are also quite common in various applications
Haralick et al., 1987, for example.

Rank order filtering is only one of the applications of
order statistic methods. In a simple definition, the phrase
order statistic methods refers to methods for combining a
large amount of data (such as the scores of the whole class
on a homework) into a single number or small set of
numbers that give an overall flavor of the data. See, for
example, Nevzorov, 2001, for further discussion of different
applications of order statistics. The main limitations of these
methods arise from the explicitly discrete nature of their
definition (see, for example, the definitions in Sarhan and
Greenberg, 1962, and Nevzorov, 2001), which is in striking
dissonance with the continuous nature of measurements.
The discrete approach imposes the usage of algebraic rather
than geometric tools in order statistics, and thus limits both
the perception of the results through the geometric interpre-
tation and the applicability of differential methods of analy-
sis.

Order statistics of a sample of a variable is most naturally
defined in terms of the cumulative distribution function of
the elements composing this sample see David, 1970, for
example, which is a monotonic function. Thus computation
of an order statistic should be equivalent to a simple task of
finding a root of a monotonic function. However, the cumu-
lative distribution of a discrete set is a discontinuous func-
tion, since it is composed of a finite number of step functions
(see Scott, 1992, for example). As a result, its derivative (the
density function) is singular, that is, composed of a finite
number of impulse functions such as Dirac d-function (see,
for example, Dirac, 1958, p. 58-61, or Davydov, 1988, p.
609-612, for the definition and properties of the Dirac
d-function). When implementing rank order methods in
software, this discontinuity of the distribution function pre-
vents us from using efficient methods of root finding involv-
ing derivatives, such as the Newton-Raphson method (see
Press et al., 1992, and the references therein for a discussion
of root finding methods). In hardware, the inability to
evaluate the derivatives of the distribution function disal-
lows analog implementation. Even though for a continuous-
time signal the distribution function may be continuous in
special cases (since now it is an average of an infinitely large
number of step functions), the density function is still only
piecewise continuous, since every extremum in the sample
produces singularity in the density function (Nikitin, 1998,
Chapter 4, for example). In fact, the nature of a continuous-
time signal is still discrete, since its instantaneous and even
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time averaged densities are still represented by impulse
functions (Nikitin, 1998, for example). Thus the time con-
tinuity of a signal does not automatically lead to the conti-
nuity of the distribution and the density, functions of a
sample of this signal.

Following from their discrete nature, the limitations of the
existing rank order methods (rank order filtering as well as
other methods based on order statistics) can roughly be
divided into two categories. The first category deals with the
issues of the implementation of these methods, and the
second one addresses the limitations in the applicability. The
implementation of the order statistics methods can in turn be
divided into two groups. The first group realizes these
methods in software on sequential or parallel computers (see
Juhola et al., 1991, for example). The second one imple-
ments them on hardware such as Very Large Scale Integra-
tion (VLSI) circuits (see Murthy and Swamy, 1992, for
example).

In software implementation, the basic procedure for order
statistics calculation is comparison and sorting. Since sort-
ing can be constructed by selection, which is an operation
linear in complexity, the algorithms for finding only a
specific rank (such as median) are more effective than the
algorithms for computation of arbitrary statistics (Pasian,
1988, for example). In addition, the performance of rank
order calculations can be improved by taking advantage of
the running window where only a minor portion of the
elements are deleted and replaced by the same number of
new elements (Astola and Campbell, 1989, for example).
Regardless of the efficiency of particular algorithms, how-
ever, all of them quickly become impractical when the size
of the sample grows, due to the increase all both computa-
tional intensity and memory requirements.

The hardware implementation of rank order processing
has several main approaches, such as systolic algorithms
(Fisher, 1984, for example), sorting networks (Shi and Ward,
1993, and Opris, 1996, for example), and radix (binary
partition) methods (Lee and Jen, 1993, for example). The
various hardware embodiments of the order statistics meth-
ods, however, do not overcome the intrinsic limitations of
the digital approach arising from the discontinuous nature of
the distribution function, such as inefficient rank finding,
difficulties with processing large samples of data, and inabil-
ity to fully explore differential techniques of analysis. It
needs to be pointed out that the differential methods allow
studying the properties “at a point”, that is, the properties
which depend on an arbitrary small neighborhood of the
point rather than on a total set of the discrete data. This offers
more effective technical solutions. Several so-called “ana-
log” solutions to order statistic filtering have been proposed
see Jarske and Vainio, 1993, for example, where the term
“analog” refers to the continuous (as opposed to quantized)
amplitude values, while the time remains discrete. Although
a definition of the continuous-time analog median filter has
been known since the 1980°s (see Fitch et al., 1986), no
electronic implementations of this filter have been intro-
duced. Perhaps the closest approximation of the continuous-
time analog median filter known to us is the linear median
hybrid (LMH) filter with active RC linear subfilters and a
diode network (Jarske and Vainio, 1993, for example).

The singular nature of the density functions of discrete
variables does not only impede both software and hardware
implementations of rank order methods, but also constrains
the applicability of these methods (for example, their geo-
metric extension) to signal analysis. The origin of these
constraints lies in the contrast between the discrete and the
continuous: “The mathematical model of a separate object is
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the unit, and the mathematical model of a collection of
discrete objects is a sum of units, which is, so to speak, the
image of pure discreteness, purified of all other qualities. On
the other hand, the fundamental, original mathematical
model of continuity is the geometric figure; . . . ” (Aleksan-
drov et al., 1999, v. 1, p. 32). Even simple time continuity of
the incoming variable enables differentiation with respect to
time, and thus expands such applicability to studying dis-
tributions of local extrema and crossing rates of signals
(Nikitin et al., 1998, for example), which can be extremely
useful characteristics of a dynamic system. However, these
distributions are still discontinuous (singular) with respect to
the displacement coordinates (thresholds). Normally, this
discontinuity does not restrain us from computing certain
integral characteristics of these distributions, such as their
different moments. However, many useful tools otherwise
applicable to characterization of distributions and densities
are unavailable. For instance, in studies of experimentally
acquired distributions the standard and absolute deviations
are not reliable indicators of the overall widths of density
functions, especially when these densities are multimodal, or
the data contain so-called outliers. A well-known quantity
Full Width at Half Maximum (FWHM) (e.g., Zaidel’ et al.,
1976, p. 18), can characterize the width of a distribution
much more reliably, even when neither standard nor absolute
deviation exists. The definition of FWHM, however,
requires that the density function be continuous and finite.
One can introduce a variety of other useful characteristics of
distributions and density functions with clearly identifiable
geometrical and physical meaning, which would be unavail-
able for a singular density function. An additional example
would be an a-level contour surface (Scott, 1992, p. 22),
which requires both the continuity and the existence of the
maximum or modal value of the density function.

Discontinuity of the data (and thus singularity of density
functions) is not a direct result of measurements but rather
an artifact of idealization of the measurements, and thus a
digital record should be treated simply as a sample of a
continuous variable. For example, the threshold discontinu-
ity of digital data can be handled by convolution of the
density function of the discrete sample with a continuous
kernel. Such approximation of the “true” density is well
known as Kernel Density Estimates (KDE) (Silverman,
1986, for example), or the Parzen method (Parzen, 1967, for
example). This method effectively transforms a digital set
into a threshold continuous function and allows successful
inference of “true” distributions from observed samples. See
Lucy, 1974, for the example of the rectification of observed
distributions in statistical astronomy. The main limitation of
the KDE is that the method primarily deals with samples of
finite size and does not allow treatment of spatially and
temporally continuous data. For example, KDE does not
address the time dependent issues such as order statistic
filtering, and does not allow extension of the continuous
density analysis to intrinsically time dependent quantities
such as counting densities. Another important limitation of
KDE is that it fails to recognize the importance of and to
utilize the cumulative distribution function for analysis of
multidimensional variables. According to David W. Scott
(Scott, 1992, page 35), “. . . The multivariate distribution
function is of little interest for either graphical or data
analytical purposes. Furthermore, ubiquitous multivariate
statistical applications such as regression and classification
rely on direct manipulation of the density function and not
the distribution function”. Some other weaknesses of KDE
with respect to the present invention will become apparent
from the further disclosure.
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Threshold, spatial, and temporal continuity are closely
related to our inability to conduct exact measurements, for
a variety of reasons ranging from random noise and fluc-
tuations to the Heisenberg uncertainty. Sometimes the exact
measurements are unavailable even when the measured
quantities are discrete. An example can be the “pregnant
chad” problem in counting election votes. As another
example, consider the measurement of the energy of a
charged particle. Such measurement is normally carried out
by means of discriminators. An ideal discriminator will
register only particles with energies larger than its threshold.
In reality, however, a discriminator will register particles
with smaller energies as well, and will not detect some of the
particles with larger energies. Thus there will be uncertain-
ties in our measurements. Such uncertainties can be
expressed in terms of the response function of the discrimi-
nator. Then the results of our measurements can be
expressed through the convolution of the “ideal” measure-
ments with the response function of the discriminator (Ni-
kitin, 1998, Chapter 7, for example). Even for a monoener-
getic particle beam, our measurements will be represented
by a continuous curve. Since deconvolution is at least an
impractical, if not impossible, way of restoring the “origi-
nal” signal, the numerical value for the energy of the
incoming particles will be deduced from the measured
density curve as, for example, its first moment (Zaidel’ et al.,
1976, pp. 11-24, for example).

A methodological basis for treatment of an incoming
variable in terms of its continuous densities can be found in
fields where the measurements are taken by an analog action
machine, that is, by a probe with continuous (spatial as well
as temporal) impulse response, such as optical spectroscopy
(see Zaidel’ et al., 1976, for example). The output of such a
measuring system is described by the convolution of the
impulse response of the probe with the incoming signal, and
is continuous even for a discrete incoming signal. For
instance, the position of a certain spectral line measured by
a monochromator is represented by a smooth curve rather
than by a number. If the reduction of the line’s position to
a number is needed, this reduction is usually done by
replacing the density curve by its modal, median, or average
value.

The measurement of variables and analysis of signals
often go hand-in-land, and the distinction between the two
is sometimes minimal and normally well understood from
the context. One needs to understand, however, that a
“signal”, commonly, is already a result of a measurement.
That is, a “signal” is already a result of a transformation (by
an acquisition system) of one or many variables into another
variable (electrical, optical, acoustic, chemical, tactile, etc.)
for some purpose, such as further analysis, transmission,
directing, warning, indicating, etc. The relationship between
a variable and a signal can be of a simple type, such that an
instantaneous value of the variable can be readily deduced
from the signal. Commonly, however, this relationship is
less easily decipherable. For example, a signal from a
charged particle detector is influenced by both the energies
of' the particles and the times of their arrival at the sensor. In
order to discriminate between these two variables, one either
needs to use an additional detector (or change the acquisition
parameters of the detector), or to employ additional trans-
formation (such as differentiation) of the acquired signal.
The analysis of the signal is thus a means for gathering
information about the variables generating this signal, and
ultimately making the phenomenon available for perception,
which is the goal. The artificial division of this integral
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process into the acquisition and the analysis parts can be a
serious obstacle in achieving this goal.

In the existing art, the measurement is understood as
reduction to numbers, and such reduction normally takes
place before the analysis. Such premature digitization often
unnecessary complicates the analysis. The very essence of
the above discussion can be revealed by the old joke that it
might be hard to divide three potatoes between two children
unless you make mashed potatoes. Thus we recognize that
the nature of the difficulties with implementation and appli-
cability of order statistics methods in analysis of variables
lies in the digital approach to the problem. By digitizing, we
lose continuity. Continuity does not only naturally occur in
measurements conducted by analog machines, or arise from
consideration of uncertainty of measurements. It is also
important for perception and analysis of the results of
complex measurements, and essential for geometrical and
physical interpretation of the observed phenomena. The
geometric representation makes many facts of analysis
“intuitive” by analogy with the ordinary space. By losing
continuity, we also lose differentiability, which is an indis-
pensable analytical tool since it allows us to set up differ-
ential equations describing the studied system: “. . . In order
to determine the function that represents a given physical
process, we try first of all to set up an equation that connects
this function in some definite way with its derivatives of
various orders” (Aleksanidrov et al., 1999, v. I, p. 119).

The origin of the limitations of the existing art can thus be
identified as relying on the digital record in the analysis of
the measurements, which impedes the geometrical interpre-
tation of the measurements and leads to usage of algebraic
rather than differential means of analysis.

DISCLOSURE OF INVENTION
Brief Summary of the Invention

As was stated in the description of the existing art, the
digital approach limits both the geometrical interpretation of
the measurements and prevents usage of the differential
means of analysis. In this invention, we present an analog
solution to what is usually handled by digital means. We
overcome the deficiencies of the prior approach by consid-
ering, instead of the values of the variables, such geometri-
cal objects as the densities of these variables in their
threshold space. The applicability of the differential analysis
is achieved byt either (1) preserving, whenever possible, the
original continuity of the measurement in the analysis, or (2)
restoring continuity of discrete data through convolution
with a continuous kernel which represents the essential
qualities of the measuring apparatus. Our approach offers (a)
improved perception of the measurements through geo-
metrical analogies, (b) effective solutions of the existing
computational problems of the order statistic methods, and
(c) extended applicability of these methods to analysis of
variables. In the subsequent disclosure we will demonstrate
the particular advantages of the invention with respect to the
known art.

In this invention, we address the problem of measuring
and analysis of variables, on a consistent general basis, by
introducing threshold densities of these variables. As will be
described further in detail, the threshold densities result
from averaging of instantaneous densities with respect to
thresholds, space, and time. Since this averaging is per-
formed by a continuous kernel (test function), it can be
interpreted as analog representation, and thus we adopt the
collective designation Analysis of Variables Through Analog
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Representation (AVATAR) for various components of the
invention. The interdependence of the variables in the mea-
surement system is addressed by introducing the modulated
threshold densities of these variables, which result from the
consideration of the joint densities of the interdependent
variables in their combined threshold space. The particular
way in which these densities are introduced leads to the
densities being continuous in thresholds, space, and time,
even if the incoming variables are of discrete nature. This
approach allows us to successfully address the limitations of
the prior art identified earlier, opens up many new oppor-
tunities for expanding the applicability of rank order analy-
sis of variables, and provides a means for efficient imple-
mentation of this analysis in both hardware and software.

In order to convey the inventive ideas clearly, we adopt
the simplified model for measurements as follows (see the
analogous ideal system in Nikitin et al., 1998, for example).
A variable is described in terms of displacement coordinates,
or thresholds, as well as in terms of some other coordinates
such as spatial coordinates and physical time. The values of
these coordinates are measured by means of discriminators
and/or differential discriminators (probes). An ideal dis-
criminator with threshold D returns the value “1” if the
measured coordinate exceeds D, “14” if it is equal to D, and
it returns zero otherwise. Thus the mathematical expression
for an ideal discriminator is the Heaviside unit step function
of the difference between the threshold and the input coor-
dinate (see Nikitin et al., 1998, and Nikitin, 1998, for
example). Although ideal discriminators can be a useful tool
for analysis of a measurement process, different functions of
thresholds need to be employed to reflect the vagaries of real
measurements (see discussion in Nikitin et al., 1998, for
example). In this invention, the peculiarities of “real” dis-
criminators are reflected by introducing uncertainty into the
mathematical description of the discriminator, such that the
returned value is in the range zero to one, depending on the
values of the input coordinate. As described further in this
disclosure, the introduction of such uncertainty can be
interpreted as averaging with respect to a threshold test
function, or threshold averaging. When the input-output
characteristic of the discriminator is a continuous function,
then differentiability of the output with respect to threshold
is enabled. In addition, if the characteristic of the discrimi-
nator is a monotonic function, the rank relations of the input
signal are preserved. If the original input signal is not
differentiable with respect to time (e.g., the input signal is
discontinuous in time), differentiability with respect to time
can always be enabled by introducing time averaging into
the acquisition system, where under time averaging we
understand a suitable convolution transform with a continu-
ous-time kernel. Likewise, differentiability with respect to
spatial coordinates can be enabled by spatial averaging.

The mathematical expression for the response of an ideal
probe, or differential discriminator, is the Dirac d-function of
the difference between the displacement and the input vari-
able, which is the instantaneous density of the input variable.
As follows from the properties of the Dirac d-function (see,
for example, Dirac, 1958, p. 58-61, and Davydov, 1988, p.
609-612, for the definition and properties of the Dirac
d-function), the output of the “real” probe is thus the
convolution of the instantaneous density with the out-output
of characteristic of the differential discriminator, which is
equivalent to the threshold averaging of the instantaneous
density. When this output is subsequently averaged with
respect to space and time, the result is the Threshold-Space-
Time Averaged Density.
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Notice that the transition from the ideal to real probes and
discriminators preserves the interpretation of their responses
as the threshold density and cumulative distribution, respec-
tively. For example, the spectrum acquired by an optical
spectrograph can be considered the energy density regard-
less the width of the slits of its monochromator. Thus a
particular way of utilizing the discriminators and probes in
this invention is essentially a method of transformation of
discrete or continuous variables, and/or ensembles of vari-
ables into normalized continuous scalar fields, that is, into
objects with mathematical properties of density and cumu-
lative distribution functions. In addition to dependence on
the displacement coordinates (thresholds), however, these
objects can also depend on other parameters, including
spatial coordinates (e.g., if the incoming variables are them-
selves scalar or vector fields), and/or time (if the variables
depend on time). For the purpose of this disclosure, the
terms “space” and “time” are used to cover considerably
more than their primary or basic meaning. “Time” should be
understood as a monotonic scalar, continuous or discrete,
common to all other analyzed variables, which can be used
for sequential ordering of the measurements. “Space” is thus
all the remaining coordinates which are employed (as
opposed to sufficient) to govern the values of the input
variables. It is important to note that the use of the invented
transformation makes all existing techniques for statistical
processing of data, and for studying probability fluxes,
applicable to analysis of these variables. Moreover, the
transformations of the measured variables can be imple-
mented with respect to any reference variable, or ensemble
of reference variables. In this disclosure, we consider two
basic transformations with respect to the reference variable,
which we refer to as normalization and modulation. The
definitions of these transformations will be given later in the
disclosure. In both of these transformations, the behavior of
the input variable is represented in terms of behavior (and
units) of the reference variable. Thus, the values of the
reference variable provide a common unit, or standard, for
measurement and comparison of variables of different
nature, for assessment of the mutual dependence of these
variables, and for evaluation of the changes in the variables
and their dependence with time. For example, dependence of
economic indicators on social indicators, and vice versa, can
be analyzed, and the historical changes in this dependence
can be monitored. When the reference variable is related in
a definite way to the input variable itself, these additional
transformations (that is, normalization and modulation) pro-
vide a tool for analysis of the interdependence of various
properties of the input variable.

Among various embodiments of the invention, several are
of particular importance for analysis of variables. These are
the ability to measure (or compute from digital data) (1)
quantile density, (2) quantile domain, and (3) quantile vol-
ume for a variable. Quantile density indicates the value of
the density likely to be exceeded, quantile domain contains
the regions of the highest density, and quantile volume gives
the (total) volume of the quantile domain. The definitions of
these quantities and a means of their implementation are
unavailable in the existing art. Detailed definitions and
description of these quantities will be given later in the
disclosure. As another consequence of the proposed trans-
formation of variables into density functions, the invention
enables measurements of currents, or fluxes of these densi-
ties, providing a valuable tool for analysis of the variables.

Another important embodiment of AVATAR is rank nor-
malization of a variable with respect to a cumulative distri-
bution function, generated by another variable or ensemble
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ofvariables. The rank normalization of variables can be used
for processing and analysis of different time ordered series,
ensembles, scalar or vector fields, and time independent sets
of variables, especially when the investigated characteristics
of the variable are invariant to a monotonic transformation
of its values, that is, to a monotonic transformation of the
thresholds. This normalization can be performed with
respect to a reference distribution of an arbitrary origin, such
as the distribution provided by an external reference vari-
able, or by the input variable itself. For example, the
reference variable can be a random process with the param-
eters determined by the input variable. In this case, the
reference variable provides a “container” in the threshold
space where the input variable is likely to be found. More
importantly, the rank normalization allows computation or
measurement of integral estimators of differences between
two distributions (or densities) as simple time and/or space
averages.

Another important usage of the rank normalization is as
part of preprocessing of the input variable, where under
preprocessing we understand a series of steps (e.g., smooth-
ing) in the analysis prior to applying other transformations.
Since in AVATAR the extent of the threshold space is
determined by the reference variable, the rank normalization
allows as to adjust the resolution of the acquisition system
according to the changes in the threshold space, as the
reference variable changes in time. Such adjustment of the
resolution is the key to a high precision of analog process-
ing.

While rank normalization reflects the rank relations
between the input and the reference variables, the modulated
threshold density describes the input variable in terms of the
rate of change of the reference variable at a certain thresh-
old. As will be clarified further in the disclosure, the modu-
lated threshold densities arise from the consideration of the
joint densities of the input and the reference variables in
their combined threshold space. Instead of analyzing such
joint variable in its total threshold space, however, we
consider the behavior of the input variable in the threshold
space of the reference variable only. The modulated densi-
ties allow us to investigate the interdependence of the input
and the reference variable by comparison of the time aver-
ages of the input variable at the thresholds of the reference
variable with the simple time average of the input variable.
As has been mentioned earlier, the important special case of
modulated densities arises when there is a definite relation
between the input and the reference variables. In this dis-
closure, we will primarily focus on the densities arising from
the two particular instances of this relation, to which we will
further refer as the amplitude and the counting densities.
Since the definiteness in the relation eliminates the distinc-
tion between the input and the reference variables, such
special cases of the modulated densities will be regarded
simply as modulated threshold densities of the input vari-
able.

The invention also allows the transformation which can
be interpreted as rank filtering of variables. That is, it
enables the transformation of a variable into another vari-
able, the value of which at any given space and time is a
certain quantile of a modulated cumulative distribution
function generated by the input and reference variables.
Thus in AVATAR the output of such a filter has simple and
clear interpretation as a level line of such a distribution in the
time-threshold plane. One needs to notice that the output of
a rank filter as defined in the existing digital signal process-
ing methods, will correspond to the discrete points on a level
line drawn for an amplitude distribution only. Thus the rank
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filtering defined in AVATAR extends beyond the known
applicability of rank filtering. It is also important that, in this
invention, such filtering process is implemented by differ-
ential means and thus conducted without sorting. The inven-
tion also provides a means for finding (selecting) the rank of
a time dependent or static variable or ensemble of variables
without sorting. Such analog rank selection permits analog
emulation of digital rank filters in an arbitrary window, of
either finite or infinite type, with any degree of precision.
Moreover, the rank selection is defined for modulated dis-
tributions as well, which extends the applicability of rank
filtering. The continuous nature of the definitions and the
absence of sorting allows easy implementation and incor-
poration of rank selecting and filtering in analog devices.
Rank filtering and selecting also provide alternative embodi-
ments for comparison of variables with respect to a common
reference variable, and for detection and quantification of
changes in variables.

Based on the embodiments of AVATAR discussed above,
we can define and implement a variety of new techniques for
comparison of variables and for quantification of changes in
variables. By determining distributions from the signal
itself, and/or by providing a common reference system for
variables of different natures, the invention provides a robust
and efficiently applied solution to the problem of comparing
variables. It is important to note that the invention enables
comparison of one-dimensional as well as multivariate den-
sities and distributions by simple analog machines rather
than through extensive numerical computations.

The particular advantages of AVATAR stem from the fact
that the invention is based on the consideration of real
acquisition systems while most of previous techniques
assume idealized measurement processes. Even if the
incoming variable is already a digital record (such as the
result of an idealized measurement process), we restore this
record to a continuous form by a convolution with a probe
continuous in thresholds, space, and time. It is important to
realize that the invention is also applicable to measurements
of discrete data. The main distinction between such mea-
surements and the restoration of a digital record lies in the
realization that the former are normally taken by continuous
action machines, and thus the results of such measurements
need to be reformulated, that is, “mapped” into analog
domain. As an example, consider the task of measuring the
amplitude (energy) distribution of a train of charged par-
ticles. Since this measurement is usually taken by means of
sensors with finite time response, the problem of measuring
the amplitude density is naturally restated as the problem of
finding the distribution of local extrema of a continuous-
time signal (Nikitin et al., 1998). This distribution can in turn
be found through the derivative of the crossing rates with
respect to threshold (Nikitin et al., 1998).

The invention can be implemented in hardware devices as
well as in computer codes (software). The applications of the
invention include, but are not limited to, analysis of a large
variety of technical, social, and biologic measurements,
traffic analysis and control, speech and pattern recognition,
image processing and analysis, agriculture, and telecommu-
nications. Both digital and analog implementations of the
methods can be used in various systems for data acquisition
and analysis. All the above techniques, processes and appa-
ratus are applicable to analysis of continuous (analog)
variables as well as discrete (digital). By analyzing the
variables through their continuous distributions and the
density functions, the invention overcomes the limitations of
the prior art by (a) improving perception of the measure-
ments through geometrical analogies, (b) providing effective
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solutions to the existing computational problems of the order
statistic methods, and (c) extending the applicability of these
methods to analysis of variables.

Further scope of the applicability of the invention will be
clarified through the detailed description given hereinafter. It
should be understood, however, that the specific examples,
while indicating preferred embodiments of the invention, are
presented for illustration only. Various changes and modi-
fications within the spirit and scope of the invention should
become apparent to those skilled in the art from this detailed
description. Furthermore, all the mathematical expressions
and the examples of hardware implementations are used
only as a descriptive language to convey the inventive ideas
clearly, and are not limitative of the claimed invention.

Terms and Definitions with Illustrative Examples

For convenience, the essential terms used in the subse-
quent detailed description of the invention are provided
below. These terms are listed along with their definitions
adopted for the purpose of this disclosure. Examples clari-
fying and illustrating the meaning of the definitions are also
provided. Note that the equations in this section are num-
bered separately from the rest of this disclosure.

1 Variable

For the purpose of this disclosure, we define a variable as
an entity x which, when expressed in figures (numbers), can
be represented by one of the mathematical expressions listed
below. Throughout this disclosure, the standard mathemati-
cal terms such as vector, scalar, or field mostly preserve their
commonly acceptable mathematical and/or physical inter-
pretation. The specific meaning of most of the common
terms will be clarified through their usage in the subsequent
detailed description of the invention. Notice that the most
general form of a variable adopted in this disclosure is an
Ensemble of Vector Fields. All other types of variables in
this disclosure can be expressed through various simplifi-
cations of this general representation. For example, setting
the ensemble weight n(u) in the expression for an ensemble
of vector fields to the Dirac d-function d(n) reduces said
expression to a single Vector Field variable. Further, by
eliminating the dependence of the latter on spatial coordi-
nates (that is, by setting the position vector a=constant), said
single vector field variable reduces to a single Vector vari-
able. Notice also that while ensembles of variables are
expressed as integrals/sums of the components of an
ensemble, it should be understood that individual compo-
nents of an ensemble are separately available for analysis.

1. Single Variable. A single variable in this disclosure can
be a vector/scalar variable, or a vector/scalar field variable.

(a) A Vector Field variable can be expressed as

x=x(a,t), (D-1)
where a is the vector of spatial coordinates, and t is the time
coordinate.

Representative Examples: (1) A truecolor image can be
expressed by a vector field x=x(a,t), where the color is
described by its coordinates in the three-dimensional color
space (red, green, and blue) at the position a. (2) The
combination of both the color intensity of a monochrome
image and the rate of change of said intensity can be
expressed by a vector field x=(x(a,t),x(a,t)).

(b) A Scalar Field variable can be expressed as

x=x(a,t), (D-2)
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where a is the vector of spatial coordinates, and t is the time
coordinate.

Representative Example: A monochrome image at a given
time is determined by the intensity of the color at location a,
and thus it is conveniently described by a scalar field
x=x(a,t).

(c) A Vector variable can be represented by the expression

x=x(1), (D-3)
where t is the time coordinate. Notice that the components
of a vector variable do not have to be of the same units or
of the same physical nature.

Representative Examples: (1) The position of a vehicle in
a traffic control problem can be described by a single vector
variable x=x(t). (2) The position and the velocity of a vehicle
together can be described by a single vector variable x=(x(t),
X))

(d) A Scalar variable can be represented by the expression

x=x(1), (D-4)
where t is the time coordinate.

Representative Example: The current through an element
of an electrical circuit can be expressed as a single scalar
variable x=x(t).

2. Ensemble of Variables. Several different variables of
the same nature can be considered as a (composite) single
entity designated as an ensemble of variables. An individual
variable in an ensemble is a component of the ensemble. The
relative contribution of a component in the ensemble is
quantified by a weight n(y) of the component.

(a) Ensemble of Vector Fields:

x:rd;m(ﬂ)xﬂ(a, 1,

D-5)

where n(u) du is the weight of the puth component of the
ensemble such that

r dun(u) =N,

a is the vector of spatial coordinates, and t is the time
coordinate.

Representative Example: A truecolor image can be
expressed by a vector field x=x(a,t), where the color is
described by its coordinates in the three-dimensional color
space (red, green, and blue), at the position a. A “compound”
image consisting of a finite or infinite set of such truecolor
images, weighted by the weights n(t), can be viewed as an
ensemble of vector fields. For example, such a compound
image can be thought of as a statistical average of the video
recordings taken by several different cameras.

(b) Ensemble of Scalar Fields:

x= f dun(ux,a, 0, (D-6)

where n(u) du is the weight of the puth component of the
ensemble such that

20

25

30

35

40

45

50

55

60

14

r dun(u) =N,

a is the vector spatial coordinates, and t is the time coordi-
nate.

Representative Example: A monochrome image at a given
time is determined by the intensity of the color at location a,
and thus it is conveniently described by a scalar field
x=x(a,t). A “compound” image consisting of a finite or
infinite set of such monochrome images, weighted by the
weights n(i), can be viewed as an ensemble of scalar fields.
For example, such a compound image can be thought of as
a statistical average of the video recordings taken by several
different cameras.

(c) Ensemble of Vectors:

x= r dun(p)x,(1),

where n(y) du is the weight of the puth component of the
ensemble such that

r dun(u) =N,

and t is the time coordinate.

Representative Example: A variable expressing the aver-
age position of N different vehicles in a traffic control
problem can be described by an ensemble of vector variables

O-7

N
x= f dpn(x,(0), where () = () y" 8- 0.
% i=1

(d) Ensemble of Scalars:

x= f dun(p)x, (D),

where n(y) du is the weight of the puth component of the
ensemble such that

f dun(u) =N,

D-8)

and t is the time coordinate.

Representative Example: The total current through N
elements of an electrical circuit can be expressed as an
ensemble of scalar variables

x= r dun(p)x,(1),
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where

N
() =)y 8- 0.

i=1

Notice that the most general form of a variable among
those listed above is the Ensemble of Vector Fields. All other
types of variables in this disclosure can be expressed
through various simplifications of this general representa-
tion. For example, setting the ensemble weight n(it) in the
expression for an ensemble of vector fields to the Dirac
d-function d(p) reduces said expression to a single Vector
Field variable. Further, by eliminating the dependence of the
latter on spatial coordinates (that is, by setting the position
vector a=constant), said single vector field variable reduces
to a single Vector variable. Notice also that while ensembles
of variables are expressed as integrals/sums of the compo-
nents of an ensemble, it should be understood that individual
components of an ensemble are separately available for
analysis.

2 Threshold Filter

In this disclosure, we define a Threshold Filter as a
continuous action machine (a physical device, mathematical
function, or a computer program) which can operate on the
difference between a Displacement Variable D and the input
variable x, and the result of such operation can be expressed
as a scalar function of THE Displacement Variable, that is,
as a value at a given displacement D. The dependence of the
output of a Threshold Filter on the input is equivalent to
those of a probe (smoothing threshold filter) or a discrimi-
nator (integrating threshold filter) as specified below.

1. Probe. A continuous action machine (a physical device,
mathematical function, or a computer program) which can
operate on the difference between a Displacement Variable
D and the input variable x, and the result of such operation
can be expressed as a scalar function of the Displacement
Variable, that is, as a value at a given displacement D. The
dependence of the output y of a probe on its input r is

equivalent to the following expression:
0=y=Fg(r), D-9)

wherey is a scalar, r is a vector or a scalar, R is a scalar width
parameter of the probe, and the test function ff, is a
continuous function satistying the conditions

rd"rf,g(r) =1, and

Lim fr(r) = 0(),

(D-10)

where d(r) is the Dirac d-function.
Representative Examples: (1) The Gaussian test function

o S 5
~ AD;

(D-11)

exp

frlr) = l_[ dp, Fap;(r)) =

i=1

[1 AD;
=1
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can act as a probe. In Eq. (D-11), the response of the probe
S to the vector input r=(r, . . ., r,) is a product of the
responses of the probes

1
Op, Fap;(ri) =
AD,

to the components r, of the input vector. (2) FIG. 6 illustrates
an optical threshold smoothing filter (probe). This probe
consists of a point light source S and a thin lens with the
focal length f. The lens is combined with a gray optical filter
with transparency described by f,(x). Both the lens and the
filter are placed in an XOY plane at a distance 2f from the
source S. The lens-filter combination can be moved in the
XOY plane by the incoming signal r so that the center of the
combination is located at

2fr
4f - R

in this plane. Then the output of the filter is proportional to
the intensity of the light measured at the location D=(D,, D)
in the D,-O-D,, plane parallel to the XOY plane and located
at the distance R from the image S' of the source S (toward
the source). That is, the output of this filter can be described
by fx(D-r).

2. Discriminator. A continuous action machine (a physical
device, mathematical function, or a computer program)
which can operate on the difference between a Displacement
Variable D and the input variable x, and the result of such
operation can be expressed as a scalar function of the
Displacement Variable, that is, as a value at a given dis-
placement D. The dependence of the output y of a discrimi-
nator on the input r is obtained by integrating the response
of the respective probe, that is, it is related to the input-
output characteristic of the respective probe as

05y=FR(x)=fX & ifg) < 1. D-12)

Representative Examples: (1) The integral of a Gaussian
test function

Tao = fx drfplr) = ﬁ Fap;(x)=27" ﬁ erfc(;—g), (D-13)
-~ i=1 i=1 i

where erfc(x) is the complementary error function, can act
as a discriminator. In Eq. (D-13), the response of the
discriminator Fx(x) to the vector input x=(x; . .., X,) is a
product of the responses of the discriminators

Fap; () = %erfc(;—;)

to the components x, of the input vector. (2) By replacing the
transparency function f,{x) of the gray filter with Fdzf(x), the
optical probe shown in FIG. 6 is converted into a discrimi-
nator with the output F4(D-r).
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3 Displacement Variable

A Displacement Variable is the argument of a function
describing the output of a Threshold Filter. For example, if
the Threshold Filter is an amplifier operating on the differ-
ence between two electrical signals D and x(t), and an output
of the amplifier is described as a function of the input signal
D, this signal D is a Displacement Variable.

4 Modulating Variable

A Modulating Variable is a unipolar scalar field variable
K=K(a,t) which can be applied to the output of a Threshold
Filter in a manner equivalent to multiplication of said output
by the Modulating Variable.

Representative Example: Imagine that the point light
source S in FIG. 6 is produced by an incandescent lamp
powered by a unit current. If we now power the lamp by the
current K(t), the output of the threshold filter will be
modulated by the modulating Variable IK(t)I.

5 Averaging Filter

An Averaging Filter is a continuous action machine (a
physical device, mathematical function, or a computer pro-
gram) which can operate on a variable x(a,t), and the result
of'such operation can be expressed as convolution with a test
function f(a) and a time impulse response function h(t;T),
namely as

(. sWER = (G sV = et s)8h = (D-14)

- f " ds f " bt -5, T frla - I, ).

where a is the position vector (vector of spatial coordinates),
and t is the time coordinate. Thus an averaging filter
performs both spatial and time averaging. We shall call the
product h(t;T) f(a) the impulse response of the Averaging
Filter.

1. Time Averaging Filter. An averaging filter which per-
forms only time averaging is obtained by setting the spatial
impulse response (test function) of the averaging filter to be
equal to the Dirac d-function, fz(a)=3(a). The result of the
operation of a time averaging filter with an impulse response
h(t;T) on a variable x(a,t) can be expressed by the convo-
Iution integral

{x(a, s));’- = foo dsh(t —s; Tx(a, s), (D-15)

where T is the width (time scale) parameter of the filter. For
two filters with the width parameters T and AT such that
T>>AT, the former filter is designated as wide, and the latter
as narrow.

Representative Example: An image formed on a lumines-
cent screen coated with luminophor with the afterglow
half-time T, ,=T In(2) is time averaged by an exponentially
forgetting Time Averaging Filter

e T)= e’;'O(t)/T.
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2. Spatial Averaging Filter. An averaging filter which
performs only spatial averaging is obtained by setting the
time impulse response of the averaging filter to be equal to
the Dirac d-function, h(t; T)=03(t). The result of the operation
of a spatial averaging filter with an impulse response (test
function) fz(a) on a variable x(a,t) can be expressed by the
convolution integral

(xtr, 0 = f " sfgla - rxer, ), (D-16)

where R is the width parameter of the filter. For two filters
with the width parameters R and AR such that R>>AR, the
former filter is designated as wide, and the latter as narrow.

Representative Example: A monochrome image given by
the matrix Z=7,(t) can be spatially averaged by a smoothing
filter w,,,,, 2, w,,=1, as

mn

M N
Diiw= D, D OmZiomjonl0):
=—M n=—N

Some other terms and their definitions which appear in
this disclosure will be provided in the detailed description of
the invention.

NOTATIONS

For convenience, lists of the acronyms and selected
notations used in the detailed description of the invention are
provided below.

SELECTED ACRONYMS AND WHERE THEY FIRST APPEAR

AVATAR Analysis of Variables Through Analog Representation,
MTD Modulated Threshold Density,

MRT Mean at Reference Threshold,

MCTD Modulated Cumulative Threshold Distribution,
ARN Analog Rank Normalizer,

ARF Analog Rank Filter,

AARF Adaptive Analog Rank Filter,

ARS Analog Rank Selector,

AQDEF Analog Quantile Density Filter,

AQDOF Analog Quantile Domain Filter,

AQVF Analog Quantile Volume Filter,

SELECTED NOTATIONS AND WHERE THEY FIRST APPEAR

Fap(D) input-output characteristic of a discriminator, Eq. (3)

0(x) Heaviside unit step function, Eq. (4)

d(x) Dirac delta function. Eq. (4)

IpFap(D) input-output characteristic of a differential
discriminator (probe), Eq. (6)

fx » volume integral as defined by Eq. (8)

r

Fx(x; a, t) cumulative distribution function, Eq. (9)

fx(x; a, t) density function, Eq. (10)

xq(3, t) qth quantile for F(x: a. t), Eq. (15)

g.(z; a, B) convolution transform of the density function fi(z; a),
Eq. (19)

fy(a, t) quantile density, Eq. (24)

Ry(a, t) quantile volume, Eq. (25)

()™ (.. ) time averages on a time scale T, Eqs. (32) and (33)

weighted mean of K with respect to x, Eq. (41)
spatial averaging with the test function fz(x), Eq. (47)
macroscopic threshold density, Eq. (46)

(MK}, o
R

fR[D - x(t)]
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-continued
cx(D, t) modulated threshold density, Eq. (52)
{M,K}1(D, t) mean at reference threshold, Eq. (53)
b(D, 1) amplitude density, Eq. (54) 5
1D, t) counting density, Eq. (55)
R(D, t) counting rates, Eq. (56)
h,(t) RC,, time impulse response function, Eq. (57)
Z,D, 0 estimator of differences in quantile domain between
the mean at reference threshold and the time
average, Eq. (63) 10
Cx(D, t) modulated cumulative threshold distribution, Eq. (64)
Cg [x(D), t] signal x(t), rank normalized with respect to the
reference distribution Cg (D, t), Eq. (81)
Ko Ko = (K2 ((Ke™)1) Eq. (84)
Q. @) estimator of differences between distributions
C,(D.t) and C(D.t). Eq. (92) 15
Ay statistic of a type of Eqgs. (95) and (97) for comparison
of two distributions
P,® probability that a value drawn from the first sequence
is q times larger than the one drawn from the second
sequence. Eq. (100)
b(D; t, n(u)) threshold averaged instantaneous density for a 20
continuous ensemble of variables. Eq. (120)
B(D; t, n(w)) threshold averaged instantaneous cumulative
distribution for a continuous ensemble of variables,
Eq. (121)
cx(D; t, n(u)) modulated threshold density for a continuous
ensemble, Eq. (122)
Cxk(D; t, n(w)) modulated cumulative distribution for a continuous 25
ensemble, Eq. (123)
cx(D; a, t) modulated threshold density for a scalar field,
Eq. (131)
cx(D; a, t) modulated threshold density for a vector field,
Eq. (138)
cg(D; a, t, n(n))  modulated threshold density for an ensemble of vector 30
fields, Eq. (139)
{M,K}1A(D; a, t) mean at reference threshold for a vector field input
variable, Eq. (140)
SqD; a, t) quantile domain factor, Eq. (144)
35
DETAILED DESCRIPTION OF THE
INVENTION
The Detailed Description of the Invention is Organized as 40
Follows.

In Section 1 (p. 34) we identify the general form of a
variable which is subject to analysis by this invention, and
provide several examples demonstrating the convenience of
such a general representation. 45

In Section 2 (p. 35) we use the example of a single scalar
variable to describe the basic elements of the analysis
system adopted in this disclosure, and introduce the dis-
criminators and probes as the sensors of such a system. The
example of a single scalar variable is used to illustrate that 50
the use of discriminators and probes enables us to reformu-
late many algebraic problems of the conventional analysis of
variables as geometrical problems in the threshold space.
The particular continuous fashion in which this geometrical
extension is performed enables the solution of these prob- 55
lems by methods of differential geometry.

In Section 3 (p. 39) we describe some of the exemplary
discriminators and the respective probes.

In Section 4 (p. 40) we introduce the normalized scalar
fields in the meaning adopted for the purpose of this dis- 60
closure as the density and cumulative distribution functions
in the threshold space. We provide a tangible example of
how the usefulness of these objects extends beyond making
details of the analysis intuitive and more available for
human perception by analogy with the ordinary space.

In Section 5 (p. 42) we provide several examples of
equations which reflect the geometrical properties of the

65
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threshold distributions, and are later used for development
of various practical embodiments of AVATAR. In particular,
the definitions of the quantile density, domain, and volume
are given along with the explanatory examples.

Section 6 (p. 47) contains a brief additional discussion of
possible relationships between the input and the reference
variables.

In Section 7 (p. 49) we give an introduction to a more
general definition of the modulated threshold densities by
analyzing an example of the threshold crossing density, a
quantity which cannot be defined for digitized data.

In Section 8 (p. 51) we generalize the result of Section 7
by introducing the modulated threshold densities and the
weighted means at thresholds. Along with explanatory
examples, we show that the weighted mean at reference
threshold is indeed a measurement of the input variable in
terms of the reference variable. We also outline an approach
to computation of the mean at reference threshold by analog
machines.

In Section 9 (p. 55) we interpret the process of measure-
ment by real analog machines as a transition from the
microscopic to macroscopic threshold densities, or as
threshold averaging by a probe. Thus we introduce the main
practical embodiments of AVATAR as the modulated thresh-
old density (Eq. (52)) and the mean at reference threshold
(Eq. (53)), along with the specific embodiments of the
amplitude (Eq. (54)) and counting (Eq. (55)) densities, and
the counting rates (Eq. (56)). We also provide a simplified
diagram of a continuous action machine implementing the
transformation of the multivariate input variable(s) into the
modulated threshold densities.

In Section 10 (p. 58) we consider a specific type of
weighting function, which is a convenient choice for time
averaging in various embodiments of AVATAR.

In Section 11 (p. 59) we focus on some of the applications
of AVATAR for enhancement of analysis through geometric
interpretation of the results. We give several examples of
displaying the modulated threshold densities and provide
illustrative interpretation of the observed results. Among
various examples of this section, there are examples of
displaying the time evolution of the quantile density,
domain, and volume. In this section, we introduce such
practical embodiments of AVATAR as the phase space
amplitude density (Eq. (60)), the phase space counting
density (Eq. (61)), and the phase space counting rates (Eq.
(62)). We also provide the illustrative examples of display-
ing these densities and the rates. In Subsection 11.1 we give
some illustrative examples of continuous action machines
for displaying the modulated threshold densities and their
time evolution.

In Section 12 (p. 65) we provide a practical embodiment
(Eq. (63)) of an estimator of differences in the quantile
domain between the mean at reference threshold and the
time average of a variable.

In Section 13 (p. 66) we provide a practical embodiment
of the modulated cumulative distribution (Eq. (64)) and
describe how the transition from the densities to the cumu-
lative distribution functions in various practical embodi-
ments is formally done by replacing the probes by their
respective discriminators. Even though the multivariate
cumulative distribution function is often disregarded as a
useful tool for either graphical or data analytical purposes
(Scott, 1992, page 35, for example), it is an important
integral component of AVATAR and is used in its various
embodiments.

In Section 14 (p. 67) we develop simple unimodal
approximations for an ideal density function, that is, the
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density function resulting from the measurements by all
ideal probe. Although these approximations are of limited
usage by themselves, they provide a convenient choice of
approximations for the rank normalization.

In Section 15 (p. 71) we introduce several practical
embodiments of rank normalization, such as the general
formula for the rank normalization with respect to the
reference distribution Cx (D,t) (Eq. (86)), normalization by
a discriminator with an arbitrary input-output response (Eq.
(88)), and normalization of a scalar variable by a discrimi-
nator with an arbitrary input-output response (Eq. (89)).

In Section 16 (p. 74) we discuss the usage of the rank
normalization for comparison of variables and for detection
and quantification of changes in variables. We provide
several simplified examples of such usage and describe a
practical embodiment of a simple estimator of differences
between two distributions (Eq. (92)). In Subsection 16.1 we
provide additional exemplary practical embodiments of the
estimators of differences between two time dependent dis-
tributions, Egs. (95) and (97). In Subsection 16.2 we provide
an example of the usage of these estimators for comparing
phase space densities and for addressing an exemplary
speech recognition problem. We also give an outline of an
approach to implementation of such comparison in an ana-
log device. In Subsection 16.3 we provide an embodiment
for a time dependent probabilistic comparison of the ampli-
tudes of two signals (Eq. (102)).

In Section 17 (p. 81) we discuss the usage of AVATAR for
analog implementation of rank filtering.

In Section 18 (p. 82) we discuss the two principal
approaches to analog rank filtering of a single scalar variable
enabled by AVATAR: (1) an explicit expression for the
output of a rank filter (Subsection 18.1), and (2) a differential
equation for the output of such a filter (Subsection 18.2). In
Subsection 18.1, we also describe a practical embodiment
(Eq. (105)) for the explicit analog rank filter.

In Section 19 (p. 84) we briefly discuss the usage of a
particular choice of a time weighting function in analog rank
filters.

In Section 20 (p. 84) we describe the main embodiment
(Eq. (113)) of an adaptive analog rank filter. In Subsection
20.1, we also provide an alternative embodiment (Eq. (117))
of this filter.

In Section 21 (p. 87) we extend the definitions of the
modulated threshold densities and cumulative distributions
to include ensembles of variables. We provide the expres-
sions for the threshold averaged instantaneous density and
cumulative distribution of a continuous ensemble, Egs.
(120) and (121), and for the modulated density and cumu-
lative distribution of a continuous ensemble of variables,
Egs. (122) and (123).

In Section 22 (p. 88) we introduce the analog rank
selectors, and provide the equations for the analog rank
selectors for continuous (Eq. (126)) and discrete (Eq. (129))
ensembles.

In Section 23 (p. 90) we describe the embodiment of an
adaptive analog rank filter for an ensemble of variables, Eq.
(130).

In Section 24 (p. 90) we introduce the modulated thresh-
old densities for scalar fields, Eq. (131).

In Section 25 (p. 91) we describe the analog rank selectors
and analog rank filters for scalar fields, Egs. (133), (134),
and (135). In Subsection 25.1, we provide an example of
filtering monochrome images using a simple numerical
algorithm (Eq. (136)), implementing an analog rank selector
for scalar fields.
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In Section 26 (p. 93) we complete the description of the
primary embodiment of the AVATAR by generalizing the
modulated threshold densities to include vector fields, Eq.
(138), and ensembles of vector fields, Eq. (139).

In Section 27 (p. 94)) we provide the description of the
mean at reference threshold for a vector field input variable,
Eq. (140).

In Section 28 (p. 95) we describe such important embodi-
ments of AVATAR as the analog filters for the quantile
density, domain, and volume. These quantities are defined in
AVATAR for multivariate densities, and thus they are
equally applicable to the description of the scalar variables
and fields as well as to the ensembles of vector fields.

In Section 29 (p. 97) we provide several additional
examples of performance of analog rank filters and selectors.

In Section 30 (p. 102) we provide a summary of some of
the main transformations of variables employed in this
disclosure.

1 Variables

In order to simplify dividing the problem of measurement
and analysis of different variables into specific practical
problems, let us assume that a variable x can be presented as
an ensemble of vector fields, that is, it can be written as

5= [ dunon,go. .

M

where n(y) du is the weight of the puth component of the
ensemble such that

f dun(u) =N,

a is the spatial coordinate, and t is the time coordinate.

Convenience of the general representation of a variable by
Eq. (1) can be illustrated by the following simple examples.
As the first example, consider a vehicle in a traffic control
problem. The position of this vehicle can be described by a
single vector variable x=x(t). If, however, we are measuring
the weight of the vehicle’s cargo, it might be more conve-
nient to describe it as a scalar field x=x(a,t), since the weight
x at a given time depends on the position vector a. If we now
extend our interest to the total weight of the cargo carried by
N different vehicles, this weight is conveniently expressed
by an ensemble of scalar fields

5= [ dunon,go. .

where a is the position vector,

N
n(w =)y 84—,

i=1

is the cargo capacity (volume of the cargo space) of the i th
vehicle, and n(i) is the density (weight per unit volume) of
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the cargo in the i th vehicle. Notice that all the different
variables in this example can be written in the general form
of Eq. (1).

As a second example, a monochrome image at a given
time is determined by the intensity of the color at location a,
and thus it is conveniently described by a scalar field
x=xX(a,t). A truecolor image is then naturally expressed by a
vector field x=x(a,t), where the color is described by its
coordinates in the three-dimensional color space (red, green,
and blue), at the position a. We can also consider a “com-
pound” image as a finite or infinite set of such images,
weighted by the weights n(it). For example, such a com-
pound image can be thought of as a statistical average of the
video recordings, taken by several different cameras.

Additional particular examples of analysis of the variables
satisfying the general form of Eq. (1) will be provided later
in the disclosure.

2 Basic Elements of System for Analysis of
Variables

A system for analysis of variables adopted in this disclo-
sure comprises such basis elements as a Threshold Filter,
which can be either a Discriminator or a Probe, and an
Averaging Filter operable to perform either time or spatial
average or both time and spatial average. This system can
also include optional modulation and normalization by a
Modulating Variable. A simplified schematic of such a basic
system for analysis of variables is shown in FIG. 1a. This
system is operable to transform an input variable into an
output variable having mathematical properties of a scalar
field of the Displacement Variable. The Threshold Filter (a
Discriminator or a Probe) is applied to a difference of the
Displacement Variable and the input variable, producing the
first scalar field of the Displacement Variable. This first
scalar field is then filtered with a first Averaging Filter,
producing the second scalar field of the Displacement Vari-
able. Without optional modulation, this second scalar field is
also the output variable of the system, and has a physical
meaning of either an Amplitude Density (when the Thresh-
old Filter is a Probe), or a Cumulative Amplitude Distribu-
tion (when the Threshold Filter is a Discriminator) of the
input variable.

A Modulating Variable can be used to modify the system
as follows. First, the output of the Threshold Filter (that is,
the first scalar field) can be multiplied (modulated) by the
Modulating Variable, and thus the first Averaging Filter is
applied to the resulting modulated first scalar field. For
example, when the Threshold Filter is a Probe and the
Modulating Variable is a norm of the first time derivative of
the input variable, the output variable has an interpretation
of'a Counting (or Threshold Crossing) Rate. The Modulating
Variable can also be filtered with a second Averaging Filter
having the same impulse response as the first Averaging
Filter, and the output of the first Averaging Filter (that is, the
second scalar field) can be divided (normalized) by the
filtered Modulating Variable. As will be discussed further in
the disclosure, the resulting output variable will then have a
physical interpretation of either a Modulated Threshold
Density (when the Threshold Filter is a Probe), or a Modu-
lated Cumulative Threshold Distribution (when the Thresh-
old Filter is a Discriminator). For example, when the Thresh-
old Filter is a Probe and the Modulating variable is a norm
of the first time derivative of the input variable, the output
variable will have an interpretation of a Counting (or
Threshold Crossing) Density.
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Let us now describe the basic elements of the analysis
system adopted in this disclosure in more details, using the
measurement a single scalar variable x=x(t) as all example.

We assume the data acquisition and analysis system
which comprises the elements schematically shown in FIG.
15. Let the input signal be a scalar function of time x(t). This
input signal (Panel I) is transformed by the discriminator
(Panel I1a) into a function of two variables, the time t and the
displacement D. The latter will also be called threshold in
the subsequent mathematical treatment. The result of such
transformation of the input signal by the discriminator is
illustrated in Panel IIla. We will provide illustrative
examples of such a measuring system below.

The input-output characteristic of the discriminator is
described by the continuous monotonic function F, ,(x) and
is illustrated in Panel Ila. We shall agree, without loss of
generality, that

@

lim Fapx)=0

1
2
lim Fap(x) =1

Fap(0) =

Although the convention of Eq. (2) is not necessary, it is
convenient for the subsequent mathematical treatment. One
skilled in the art will now recognize that a discriminator can
thus be interpreted as a threshold integrating filter. The
dependence of F,,, on the width parameter AD then can be
chosen in such way that F, ;, approaches the Heaviside unit
step function (Arfken, 1985, p. 490, for example) as AD
approaches a suitable limit, namely

dim Fap(D —x) = 6D - x), (©)
where 0(x) is defined as
0 forx<0 4
o= [ dsots)={ £ porx=0.
1 forx>0

and 0(x) is the Dirac d-function. When the functional form
of the discriminator is the Heaviside unit step function 0(x),
such discriminator will be called an ideal discriminator.
Some other exemplary functional choices for discriminators
will be discussed further.

As an illustration, consider the following example. Imag-
ine that the signal x(t) in Panel I is an electrical current
which we measure with the ammeter of Panel Ila. The scale
of the ammeter is calibrated in units of current, and D is our
reading of this scale. Then F, ,(D-x) can be interpreted as
the probability that our measurement (reading) D exceeds
the “true” value of the input current x, and AD is indicative
of the precision of the instrument (ammeter). Thus F, ,[D-
x(t)] (Panel IIIa) is just such probability with respect to a
time-varying input signal, and this probability is now a
function of both threshold and time. Notice that this function

z=Fsp[D-X(0)]=f (D) ®
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is represented in a three-dimensional rectangular coordinate
system by a surface, which is the geometric locus of the
points whose coordinates t, D, and z satisfy Eq. (5). Thus the
methodological purpose of the measurements by a means of
discriminators and probes can be phrased as “raising” the
“flat” problem of the analysis of the curve on a plane into the
“embossed” surface problem of a three-dimensional space.
This alone enables new methods of analysis of the signal
x(t), and allows more effective solutions of the existing
problems of the prior methods. As a simple analogy, con-
sider the problem of constructing four equilateral triangles
out of six wooden matches. This task cannot be achieved on
a plane, but can be easily accomplished by constructing a
tetrahedron in a three-dimensional space.

The output of the discriminator can be differentiated with
respect to the displacement (threshold). The same can be
achieved by a means of transforming the input signal by a
differential discriminator, or probe, as illustrated in Panels
IIb and IIIb. The input-output characteristic of a probe is
coupled with the one of the discriminator by the relation

d ©6)
OpFap(D —x) = %ﬂD(D - %),

where d,, denotes differentiation with respect to the thresh-
old D. As follows from the description of a discriminator, it
is convenient, though not necessary, to imagine d,F, 5, to be
nonnegative. It is simplest to assume that d,F, ,(x) has a
single extremum at x=0, and vanishes at x==co.

As another example, consider a voltage x(t) (Panel I)
applied to the vertical deflecting plates of an oscilloscope
(Panel IIb). If the vertical scale of the graticule is calibrated
in units of voltage, we can imagine d,F, ,(D-x) to be the
brightness (in the vertical direction) of the horizontal line
displayed for the constant voltage x, with AD indicative of
the width of this line. Then d,F,,[D-x(t)] (Panel IIIb)
describes the vertical profile of the brightness of the dis-
played line for the time-varying input signal x(t).

As will be discussed subsequently, the input-output char-
acteristic of a probe call be called the threshold impulse
response function of the detection system. One skilled in the
art will recognize that a probe can thus be interpreted as a
threshold smoothing filter. The functional form of the probe
will also be called the (threshold) test function in the
subsequent mathematical treatment. Clearly, as follows from
Egs. (4) and (6), the threshold impulse response of an ideal
detection system, that is, a system employing ideal discrimi-
nators, is described by the Dirac d-function. Some other
exemplary functional choices for probes will be discussed
further.

For the purpose of this disclosure, we will further refer to
the measuring system comprising the non-ideal discrimina-
tors and probes as a “real” measuring system. The output of
such a system, and thus the starting point of the subsequent
analysis, is no longer a line in the time-threshold plane (as
in the case of an ideal system), but a continuous surface (see
Eq. (5), for example). Based on the described properties of
the discriminators and probes, one skilled in the art will now
recognize that discriminators and differential discriminators
effectively transform the input signal into objects with
mathematical properties of cumulative distribution and den-
sity functions, respectively. The main purpose of such trans-
formation is to enable differentiation with respect to dis-
placement (threshold), while preserving, if originally
present, differentiability with respect to space and time. If
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the original input signal is not time-differentiable (e.g., the
input signal is time-sampled), differentiability with respect
to time can always be enabled by introducing time averaging
into the acquisition system. Likewise, differentiability with
respect to spatial coordinates can be enabled by spatial
averaging.

Particular practical embodiments of the discriminators
and probes will depend on the physical nature of the
analyzed signal(s). For example, for a scalar signal of
electrical nature, the discriminator can be viewed as a
nonlinear amplifier, and the threshold as a displacement
voltage (or current, or charge). If the incoming signal
describes the intensity of light, then the displacement can be
a spatial coordinate z, and the discriminator can be an optical
filter with the transparency profile described by F, ,(z). The
differential discriminator (probe) can then be implemented
through the techniques of modulation spectroscopy (see
Cardona, 1969, for example, for a comprehensive discussion
of modulation spectroscopy). As an additional example,
consider the modification of the previously discussed current
measurement as follows. Imagine that a gray optical filter is
attached to the needle of the ammeter, and the white scale is
observed through this filter. Assume that when no current
flows through the ammeter, the blackness observed at the
position D on the scale is F, (D), with zero corresponding
to the maximum intensity of the white color, and “1”
representing the maximum blackness. Then F,,[D-x(1)]
will describe the observed blackness of the scale for the
time-varying signal x(t) (see Panel 1lla in FIG. 15). If the
profile of the filter were changed into d,F, (D), then the
observed darkness of the scale will correspond to the output
of a probe rather than a discriminator (see Panel I1Ib in FIG.
15). Since the mathematical description of any practical
embodiment will vary little, if at all, with the physical nature
of'the measuring system and analyzed signal, we will further
use the mathematical language without references to any
specific physical (hardware) implementation of the inven-
tion. It is also understood that all the formulae manifesta-
tions of the embodiments immediately allow software
implementation.

3 Exemplary Discriminators and Probes

Given the input x, the value of 6(D-x) is interpreted as the
output of an ideal discriminator set at threshold D (see
Nikitin et al., 1998, and Nikitin, 1998, for example). Thus
the value of

d
8D =x) = 220D ~x)

is the output of an ideal probe.

Input-output characteristics of some exemplary discrimi-
nators and the respective probes are shown in FIG. 2. Notice
that although we show only symmetric discriminators,
asymmetric ones can be successfully applied for particular
tasks, as well as any linear combination of the discrimina-
tors. A particular mathematical expression describing the
input-output characteristic of a discriminator is important
only for mathematical computations and/or computer emu-
lations. Any physical device can serve as a discriminator, as
long as its input-output characteristic and the characteristic
of the respective probe satisfy the requirements for a test
function, e.g., Egs. (2), (3), and (6).

For those shown in FIG. 2, the mathematical expressions
are as follows:
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Gaussianr  9p Fap(D -1 = ——e ), Fip(D) = Lerte( 1)
aussian: p Fap(D —x) = e , Fap(D) = zerfe] — J;
ADVr 2 AD
Cauch p Fa D——ll Dz*lTD—l ! Dy
auchy: pFap(D) = ZAD +(E) , Fap(D)= 3 + ;arctan(ﬁ),
1 _In 1 DO, - D,
Laplace: 8p Fap(D) = me AD Fap(D) = 5[1 +e D

. 2 ( D D
Hyperbolic dp Fap(D) = E(eAD +e AD)

4 Normalized Scalar Fields

Since the invention employs transformation of discrete or
continuous variables into objects with mathematical prop-
erties of space and time dependent density or cumulative
distribution functions, these properties and their consequent
utilization need to be briefly discussed. We will further also
use the collective term normalized scalar fields to denote the
density and cumulative distribution functions. Note that the
term “time” is used as a designation for any monotonic
variable, continuous or discrete, common to all other ana-
lyzed variables, which can be used for sequential ordering of
the measurements. Thus “space” is all the remaining coor-
dinates which are employed to govern the values of the input
variables. The term “threshold space” will be used for the
coordinates describing the values of the variables. For the
purpose of this disclosure only, we will further also use the
term “phase space”, which will be understood in a very
narrow meaning as the threshold space employed for mea-
suring the values of the variable together with the values of
the first time derivative of this variable.

Let us further use the notation for a volume integral as
follows:

fx d”rf(r):fx1 dry ...fndrnf(r),

®

where x=(x, . . ., x,) and r=(r, . . . r,) are n-dimensional
vectors. This definition implies cartesian coordinates, which
we also assume in further presentation. If the subsequent
equations need to be re-written in curvilinear coordinates
(e.g., for the purpose of separation of variables), this can be
done by the standard transformation techniques. Refer to
Arfken, 1985, Margenau and Murphy, 1956, or Morse and
Feshbach, 1953, for example, for a detailed discussion of
such techniques.

Now let F (x;a,t) be a space and time dependent cumu-
lative distribution function, i.e.,

Fr(x a0 = f " dfia,n, ©

where fr(x;a,t) is a density function, i.e, fr(x;a,t)Z0, and

r drfg(rya, 1) = 1.

10)

- FanD) = g1 +an{ ]

—
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Phase space density (see Nicholson, 1983, for example) in
plasma physics and probability density (see Davydov, 1988,
and Sakurai, 1985, for example) in wave mechanics are
textbook examples of time dependent density functions.
Another common example would be the spectral density
acquired by a spectrometer with spatial and temporal reso-
Iution (see Zaidel’ et al., 1976, for example). In Eqgs. (9) and
(10), the subscript K denotes functional dependence of F.
and f, on some space and time dependent quantity (vari-
able) K. That is although these equations hold for any given
space and time, the shape of f (and, as a result, the shape
of F) might depend on K. The particular wave in which
such dependence is introduced and utilized in this invention
will be discussed further in the disclosure.

The usefulness of density and cumulative distribution
functions for analysis of variables extends beyond the fact
that the geometric representation makes details of the analy-
sis intuitive and more available for human perception by
analogy with the ordinary space. It also lies in one’s ability
to set up equations better describing the behavior of the
variables than the algebraic equations of the prior art. As has
been discussed previously, for example, a level line of the
cumulative distribution function of a scalar variable in the
time-threshold plane corresponds to the output of an order
statistic filter. It is an easy-to-envision simple geometric
image, having many analogies in our everyday experience
(e.g., topographical maps showing elevations). Since it is a
curve of the plane, it is completely determined by an
algebraic equation with two variables, F(x,y)=0, with the
easiest transition from the implicit to the explicit form as a
well-known differential equation (see Bronshtein and
Semendiaev, 1986, p. 405, Eq. (4.50), for example):

Fix y(x) an

YO = E e

As another example, imagine that the function fx(x;a,t) in
a traffic control problem describes the density of cars (num-
ber of cars per unit length of the road). Then the properties
of'this density function might be analogous to the properties
of the density of fluid. They will, for example, satisfy the
continuity equation (Artken, 1985, p. 40, for example). Then
fluid equations will be the most appropriate for the descrip-
tion of the properties of the density function of the traffic
problem. Specific applications of the density functions will,
of course, depend on the physical nature (or applicable
physical analogy) of the variables involved, that is, on the
nature of t, a, and x, and on the constraints imposed on these
variables. In the next subsection, we will provide several
examples of the equations involving the threshold distribu-
tion and density functions, which might be of general usage
for analysis of variables.



US 7,242,808 B2

29

5 Rank Normalization, Rank Finding, and Rank
Filtering

Using the above definitions for the normalized scalar
fields, we can now introduce several examples of additional
transformations of variables. Some of these equations will
be used further in the disclosure for development of various
practical embodiments of AVATAR. Let us first identify rank
normalization and filtering of variables as follows.

Let us consider a new (dimensionless scalar) variable
(field) y(a,t) defined as

(@) (12)
yla, 1) = Fg[x(a, 0;a, 1] = f d" i (r; a, D),

—ca

where x(a,t) is an arbitrary variable. Apparently, 0=y(a,t)=
1. Since 9,F(x;a,t)=0, where 4., denotes a partial deriva-
tive with respect to x,, Eq. (12) defines rank normalization
of the variable x(a,t) with respect to the reference distribu-
tion Fz. Rank normalization transforms a variable into a
scalar variable (or scalar field, if the transformed variable is
a field variable), the magnitude of which at any given time
equals to the value of the reference distribution evaluated at
the value of the input variable at a this time. Thus Fj
provides a (nonlinear) scale for measurement of x(a,t). We
will discuss rank normalization in more details later in the
disclosure.

Differentiating Eq. (12) with respect to time leads to yet
another defining equation for an analog rank normalizer
(ARN) as follows:

YL ((xa,0)+(EV ) p(x;a,0), (13)
where 9, denotes a partial derivative with respect to t, and
X-V_in cartesian coordinates is simply

z (14)

Let us now introduce another transformation of variables,
which can be interpreted as rank filtering. By definition, x,,
is the qth quantile of F(x;a,t) when

Fr(xga,0) = fqd” rf(r; a, 1) = g = constant, (13)

—ca

where 0=q=1 is the quantile value. Note that Eq. (15)
describes a simple surface in the threshold space. When the
variable X is a scalar, that is, x(a,t)=x(a,t), this surface is a
point on the threshold line, and thus (as has been previously
discussed) Fr(x ;a,t)=q describes a level line in the time-
threshold plane. Taking the full time derivative of Fx(x;a,t)
allows us to rewrite Eq. (15) in differential form for a family
of equiquantile surfaces in the threshold space as

A F (x5, 0+ V )F plx,a,0=0. (16)
We can further introduce some constraints on x_, such as
constraints on the direction of X, or other subsidiary con-
ditions. For example, if we allow only the nth component of
x,, to depend on time, the time derivative of this component
can be written as
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. 0, Fx(xg; a, 1) an
kgp=—7———"——

G F]

eqn x5 0,0

assuming that all derivatives in this equation exist. Eq. (17)
thus defines an analog rank filter (ARF). The latter can also
be called analog order statistic filter (AOSF), or analog
quantile filter (AQF). Note that even though we adopt the
existing digital signal processing terminology such as “order
statistic filter”, this is done by a simple analogy between the
geometric extension of the AVATAR and the definitions in
the discrete domain. Our definitions cannot be derived from
the algebraic equations defining order statistic filtering in
digital signal processing. Note also that a particular form of
Eq. (17) depends on the nature of constraints imposed on x,,.
For the important special case of the input variable as an
m-dimensional surface, that is, a scalar field x=z(a,t), where
a=(a, ..., a,), Eq. (17) reads as

8 Fx(zg(a, 1); a, 1]
Fxlzgla, D a, 1]

18
fan = - 18

In numerical computations, Eqs. (17) and (18) can be
considered to be modifications of the Newton-Raphson
method of root finding (see Press et al., 1992, for example,
and the references therein for the discussion of the Newton-
Raphson method).

When the distribution function does not depend on time
explicitly, F=F(z;a), we can introduce an explicit para-
metric dependence of the density function on some {3, for
example, through the convolution transform

19
salza )= f dety (B ) f(@: ). 19

such that g (z;a, B) approaches f,(z;a) as o approaches a
suitable limit, for example, when ¢,(f—€) approaches the
Dirac 8-function 3(f—e). Then the equality

2a.5) (20)
f dog(e.a, =g

leads to the equation for an analog rank finder, or analog
rank selector, as follows:

Zg(a.5) 21)
f dedg ga(e; a, B)

Zg(a, f) = ——

a o T
glzgla Bia, Bl 7

ap

Introducing parametric dependence through the convolution
transform will later be shown to be convenient in rank
selectors for an ensemble of time dependent variables, since
the parameter 3 can be chosen to be the time itself. Clearly,
there are plenty of alternatives for introduction of such
parametric dependence. For example, one can choose fi(e;
a, 0)=¢p(c)f (e;a) with ¢(c) such that lim,,_,.p(a)=1. As an
illustration, the choice ¢p(a)=1-(1-q)e™ leads to
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d g - Fx(zg a)

20T -0 —ge lxzg @’

22

where z,(a, o) rapidly converges to the “true” value of z (a).
Notice again that the definitions of the analog rank selectors
require the existence of f, that is, the threshold continuity
of F, and thus cannot be introduced in the digital domain.

Finally, the threshold continuity of the distribution func-
tion allows us to write, for both time dependent and time
independent scalar fields, an explicit expression for the qth
quantile of F(x;a,t) as

Xq(a, D) = r drify(r; a, DO[Fg(r; a, 1) — g]. @3

The derivation and properties of this equation for rank
filtering will be discussed later in the disclosure. Further, we
will also provide a means of evaluating this expression by
analog machines.

Let us also define another type of rank filtering, which,
unlike the rank filtering defined earlier, is applicable to
multivariate variables and does not (and cannot) have a
digital counterpart, as follows:

r d"rfy (r; a, DOl fx (r; a, D — fy(a, D] = g = constant, 2

where f_(a,t) is quantile density. Since the density function
fr(x:a,t) vanishes at x,=xo, the surface in the threshold
space defined by Eq. (24) encloses the series of volumes
(regions in the threshold space) such that fz(x:a,0)>F (a,0),
and the integral of fz{(x;a,t) over these volumes is equal to
q. We shall call this series of regions in the threshold space
the quantile domain. Notice that the left-hand side of Eq.
(24) is non-increasing function of f (a,)Z0. Later in the
disclosure, we will provide a means of finding f (a,t) by
continuous action machines.

We shall designate the total volume enclosed by the
surface defined by Eq. (24) as quantile volume R, which
can be computed as

ad 25
Ryla, 1= f & e a0~ fyfa, D], @)

Notice that the quantile density indicates the value of the
density likely to be exceeded, and the quantile volume gives
the total volume of the highest density regions in the
threshold space. As an example, consider the density of the
cars in a city. The median density will indicate the degree of
congestion on the roads, providing the number of cars per
unit length of a road (or, inversely, “bumper-to-bumper”
distance) such that half of the traffic is equally or more
dense. Then the median domain will indicate the regions
(stop lights and intersections) of such congested traffic, and
the median volume will give the total length of the congested
roads. As another simple example, consider the price
(amount per area) of the land in some geographic region.
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The median density will be the price such that the total
amount paid for the land equally or more expensive will be
half of the total cost of the land in the region. Then the
median domain will map out these more expensive regions,
and the median volume will give the total area of this
expensive land. Notice that even though in the latter
example the “median density” is price (it has the units of
amount per area), it is not the “median price” in its normal
definition as “the price such that half of the area is less (or
more) expensive”. Later in the disclosure, we will provide a
means of computation of the quantile domain and volume by
continuous action machines.

Since the distribution and density functions F and fx
depend on the quantity K, comparison of these functions
with respective F., and fg. for a different quantity K' will
provide a means for assessment of K and K' in their relation
to the reference variable, that is, to the variable for which the
distribution and density were computed. For example, the
equality F=F . when K=K' will indicate that even though K
and K' are not equal, they are equivalent to each other in
their relation to the reference variable, at least under the
conditions of the conducted measurement. When the quan-
tity K represents the reference variable in some way so that
the behavior of K reflects some aspects of the behavior of the
reference variable, the reference variable should be consid-
ered a component of the measured signal or process rather
than a part of the acquisition system. In this case, we shall
designate the reference variable as the input variable and call
the quantity K an associated variable, or an associated
signal. When such interdependence between K and x is not
only implied or suspected, but defined in some particular
way, we will also call x the input variable, and K a property
of the input variable.

The particular way in which the dependence of the density
and the cumulative distribution functions on K are intro-
duced in this invention can be interpreted as measuring the
input variable K in terms of the rate of change of the
reference variable x at a certain threshold D. The details of
this interpretation will be provided later in the disclosure. In
the next subsection, we will briefly discuss some aspects of
the relationship between the input and the associated vari-
ables.

6 Relationship between Input and Associated
Variables

In order to implement comparison of variables of different
natures, it is important to have a reference system, common
for all variables. Naturally, time (t) is one of the coordinates
in this reference system, since it equally describes evolution
of all measured variables. Time can also serve as a proxy for
any monotonically ordered index or coordinate. For brevity,
we shall call the remaining coordinates governing the values
of the variables the spatial coordinates (a). Time and space
are the third and second arguments, respectively, in the
dimensionless object, cumulative distribution function, we
are to define. We will call the first argument of the cumu-
lative distribution the threshold, or displacement (D), and
the units of measurements of this argument will be the same
as the units of the input (reference) variable.

There is plenty of latitude for a particular choice of an
associated variable K, and a variety of ways to introduce the
coupling between K and the input variable. For the purpose
of this disclosure, it would be of little interest to us to
consider an a priori known K other than K=constant. Thus
K must not be confused with the part of the acquisition
system and rather should be considered a component of the
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measured phenomenon. The relationship between K and the
input variable can be of a deterministic nature, such as
mathematical transformation, or a result of physical depen-
dence. For example, the reference variable can be the
instantaneous air temperature, and the associated variable
can be the instantaneous humidity. Then we might be
interested in measuring the dependence of the humidity on
the temperature variations at a given temperature. Or, the
reference variable can be the total population of the psychi-
atric wards in the United States, and the associated variable
the Dow Jones Industrial Average. Then one might try to
investigate how the rate of change in the mental health of the
nation affects the economic indicators. One skilled in the art
will recognize that such dependence between the input and
the reference variable is most naturally described in terms of
their joint distribution. However, such a joint distribution
will be a function of the threshold coordinates of both the
input and the reference variables. Thus a different input
variable will require a different threshold space for the
description of its dependence on the reference variable. In
order to enable comparison between input variables of
different natures, we would desire to use the reference
system common to both input variables, that is, the threshold
coordinates of the reference variable.

As we will try to illustrate further, the choice of both
reference and associated variables should be based on the
simplicity of treatment and interpretation of the results. For
our illustrative purposes, pursuant to easy and useful inter-
pretation, we introduce nonconstant associated variables
only as norms of the first two time derivatives of the input
signal, %l and IXI. Our choice of coupling as modulation, as
further described in detail, is based solely on the immediate
availability of physical interpretation of the results in the
case of K=ikl. For example, the cases K=constant and K=l
relate to each other as the charge and the absolute current in
electric phenomena. This coupling (as modulation) allows
the input (reference) variable to provide a common unit, or
standard, for measuring and comparison of variables of
different nature. This coupling also enables assessment of
mutual dependence of numerous variables, and for evalua-
tion of changes in the variables and in their dependence with
time. For example, dependence of economic indicators on
social indicators, and vice versa, can be analyzed, and the
historical changes in this dependence can be monitored.
Different choices of associated variables, however, may
benefit from different ways of coupling.

For the purpose of this disclosure, we assume that con-
tinuous is synonymous to differentiable. Whenever neces-
sary, we assume a continuous input variable x(a,t). When the
definition of a particular property requires continuity of
derivatives of the input variable, such continuity will also be
assumed. For instance, the definitions of the densities for the
threshold accelerations and for the phase space threshold
crossing rates of a scalar variable x(t) will require continuity
of the first time derivative x(t) of the input variable. Of
course, all the resulting equations are applicable to digital
analysis as well, provided that they are re-written in finite
differences.

7 Threshold Density for Counting Rates of Single
Scalar Variable

As an introduction to a more general definition, let us
consider a single scalar continuous-time variable (signal)
X(t), and define a time dependent threshold density for this
signal’s counting (threshold crossing) rates. First, we notice
that the total number of counts, i.e., the total number of
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crossings of the threshold D by the signal x(t) in the time
internal 0=t=T, can be written as (see Nikitin et al., 1998,
and Nikitin, 1998, for example)

(26)

T
N(D):Zfo dis(t— 1),

where 3(x) is the Dirac d-function, and t;, are such that
x(t)=D for all i. Using the identity (Rumer and Ryvkin,
1977, p. 543, for example)

O(x —x; 27
dla-f@=] —l(Jf, . Gn

we can rewrite Eq. (26) as
(28)

T
ND) = f (016D - x(0),
0

where the dot over x denotes the time derivative. In Eq. (27),
If'(x)l denotes the absolute value of the function derivative
with respect to x and the sum goes over all x, such that
f(x,)=a. Thus the expression

1 (T (29)
R(D) = Tfo dix®)|6[D - x(1)]

: f s 151D - )

defines the counting, or threshold crossing, rate.

FIG. 3 illustrates the counting process for a continuous
signal. This illustration utilizes the fact that

d
0x) = ——0),

where 6(x) is the Heaviside unit step function, and thus
0[x(1)-D]=x(t)d[x(1)-D] by differentiation chain rule.

Replacing the rectangular weighting function in Eq. (29)
by an arbitrary time window h(t), the rate of crossing of the
threshold D by the signal x(t) can be written as the convo-
Iution integral

Ry(D, 1) = foo dsh(t — 5)|x(5)|0[D — x(5)], (30

o0

where the time weighting function h(t) is such that

r dshis) =1,

(3D
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and is interpreted as a moving (or sliding) window. It is
simplest, though not necessary, to imagine h(t) to be non-
negative. Notice that now the threshold crossing rate (Eq.
(30)) depends on time explicitly. Note also that in Eq. (30)
this rate is measured by means of an ideal probe 9 ,F, ,(D-
x)=0(D-x) with time impulse response h(t).

If T is a characteristic time, or duration of h(t), we will use
shorthand notations for the integral

rdsh(t—s; T)...=(. )k

=

(32)

(33)

These equations define a time average on a time scale T. We
will consequently use the notations of Egs. (32) and (33) for
both continuous and discrete time averages. The notation of
Eq. (32) will be used whenever the particular choice of the
weighting function is important.

Noticing that

r dDRy(D, 1) = (&)1,

we can now define the counting (threshold crossing) density
as

{HSD - x))r
{&hr

34
D, D) = G4

where we used the shorthand notation of Eq. (33).

The meaning of the above equation can be clarified by its
derivation from another simple reasoning as follows. Note
that a threshold crossing occurs whenever the variable has
the value D, and its first time derivative has a non-zero
value. Then the density of such events is expressed in terms
of the joint density of the amplitudes of the variable and its
time derivative as

f ADIDKED; - 3D — 1)y 53

—ca

rD, 1=

5 dD [ dDiD(8(D; - £)8(D — X))y

<f°° dD|D|6(D; — 2)5(D — x)>
—00 T

"~ {JSdDJT dDADSD; ~ 13D - ),

{XIS(D = x))r
[CX

The significance of the definition of the time dependent
counting (threshold crossing) density, Eq. (34), stems from
the importance of zero-crossings, or, more generally, thresh-
old crossings, and zero/threshold crossing rates for many
signal processing applications. These quantities characterize
the rate of change in the analyzed signal, which is of the
most important characteristics of a dynamic system. The
importance of threshold crossing rates can be illustrated by
the following simple physical analogy: If x(t) describes the
location of a unit point charge, then 8(D-x) is the charge
density, and thus XI3(D-x) is the absolute current density at
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the point D. In the next subsection, we generalize the above
result and provide its additional interpretation.

8 Modulated Threshold Densities and Weighted
Means at Thresholds

In order to generalize the above result, let us first analyze
the example shown in FIG. 4. Consider intersections of a
scalar variable x(t) in the interval [0, T] with the thresholds
{D,}, where D,,,=D+AD. The instances of these crossings
are labeled as {t,}, t,,>t. The thresholds {D,} and the
crossing times {t,} define a grid. We shall name a rectangle
of this grid with the lower left coordinates (t,, D) as a s;; box.
We will now identify the time interval At,; as t,, , ~t; if the box
s,; covers the signal (as shown in FIG. 4), and zero otherwise.

We can thus define the threshold density, modulated
(weighted) by the associated variable K, or simply Modu-
lated Threshold Density (MTD), as

> AnK @) (36)
.1
L)
Utilizing Eq. (27) we can rewrite Eq. (36) as
37

1 T
Tfo dtK(8(D - x(1)) _ (KOD —x)y

cx(D, 0=
1 K
7 STk Kr

For example, K(t)=Ix(t) leads to the previously described
result, that is, to the counting density. For K=constant, Eq.
(37) reduces to the amplitude density (Nikitin. 1998),
namely

b(D, 1) = r dsh(1 - $)5[D — X (s)] = (5(D — x))7. 38

Notice that the modulated threshold density also formally
reduces to the amplitude density whenever

$KS(D-%)? =S&?> 8 (D-%), (39)

that is, when K(t) and the pulse train d[D-x(t)]=
&(D)I"'Z,8(t-t,) are uncorrelated.

To further clarify the physical meaning of MTD, let us
first use Eq. (27) and rewrite the numerator of Eq. (37) as

K;
EON

(40)

(KS(D-x))p = ) he—1)

which reveals that it is just a weighted sum of the ratios K,/
%(t,)l, evaluated at the intersections of x with the threshold
D. Noticing that the ratio dD/IX(t,)l is equal to the time
interval the variable r spends between D and D+dD at the ith
intersection, we shall realize that
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M.KYL(D, 1) = =
{MK}r(D, D) Dk

is the time weighted mean of K with respect to x at the
threshold D, or simply Mean at Reference Threshold (MRT).
Using this designation (MRT) can further be justified by
rewriting the middle term of Eq. (41) as

d ] ] ' @2
(Ko -x0}h _ <[ﬁ DD~ K)p(d - >r
(D - x)e (8D - XD
~ (8D = K)S(D = x)}
- f; 4Dk DE 5D — o0k
- f d Dy Dy f(Dx; D, 1),

which demonstrates that MRT is indeed the first moment of
the density function f(Dg;D.t). Notice that here the thresh-
old coordinates D of the variable x are the spatial coordi-
nates of the density function f. Later in the disclosure, we
will generalize this result to include the multivariate modu-
lated threshold densities. Then, for example, if the reference
variable x(t) is the positions of the particles in an ensemble,
and K(O)=%(t)=v(t) is their velocities, then {M K},”(D, t)
will be the average velocity of the particles at the location D
as a function of time t. Using Eq. (41), Eq. (39) can be
rewritten as

{M.K} DK @3)
and understood as the equality, at any given threshold,
between the weighted mean of K with respect to x and the
simple time average of K. That is, if Eq. (43) holds for any
threshold, the weighted mean of K with respect to x is a
function of time only. Obviously, Eq. (43) always holds for
K=constant.

It is very important to notice that although the modulated
threshold density given by Eq. (37) implies that K never
changes the sign from “plus” to “minus” (or vice versa), the
weighted mean at threshold of a reference variable defined
by Eq. (41) is meaningful for an arbitrary K, and thus the
comparison of Eq. (43) can always be implemented. For

example, this comparison is implementable for <K»=0,
when the modulated density does not exist.

Eq. (43) signifies that a simple comparison of the
weighted mean at threshold {M, K}, ”with the simple time

average <K>,”, that is, comparison of a modulated density
with unmodulated (amplitude), will indicate the presence of
correlation between the reference and the associated vari-
ables as a function of threshold (and time) on a given time
scale. In other words, the equality of Eq. (43) holds when,
at a given threshold D, the values of the variable K are
uncorrelated with the time intervals the variable x spends
between D and D+dD. As a simplified example, consider
K(t) as a clipped x(t), that is, as
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for x(z) < Dy 44

Do
K() = )
{x(t) for x(z) = Dy

In this case, Eq. (43) will hold for D=D,, and will generally
fail for D>D,,.

As another example, let the signal x(t) represent a
response of a detector system to a train of pulses with high
incoming rate, Poisson distributed in time. The high rate
might cause high order pileup effects in some low energy
channels of the detector. Then, as follows from (Nikitin,
1998), the amplitude and the threshold crossing densities for
such a signal, measured in these channels, will be identical.
Thus the channels afflicted by the pileup effects can be
identified by comparing the counting rate with the amplitude
distribution in different channels.

As an opposite extreme of Eq. (43), the mean at reference
threshold can be a function of threshold only, and thus K
would be completely determined by the reference variable.
As an illustration, consider a linear reference variable x=at,
a>0, and thus

8D -x) = éé(g -1,

which leads to the MRT as

45)

! r dsh(z—s)K(s)é(B —s)
M KD, 0 = L= k(2

érdsh(t—s)é(g—s) a’

—ca

which depends only on the threshold. One skilled in the art
will now recognize that a simple reincarnation of Eq. (45) in
a physical device would be an ideal oscilloscope (that is, a
precise oscilloscope projecting an infinitesimally small spot
on the screen) where the reference variable x=at is the
voltage across the horizontal deflecting plates, and the MRT
is the vertical position of the luminescent spot on the screen
at x=D. Thus the measurement of the MRT is indeed
“measuring the input variable K in terms of the reference
variable x”. For an arbitrary reference variable, the MRT is
the average of these vertical positions weighted by the time
intervals the reference variable spends at the horizontal
position D. Since the afterglow of the luminophor coating of
the screen conveniently provides the (exponentially forget-
ting) time averaging, the MRT can be measured as the
average vertical deflection, weighted by the brightness of the
vertical line at the horizontal deflection D. In the next three
subsections we will clarify how this idealized example
relates to the real measurements.

FIG. 5 provides another example of using modulated
densities for measuring the input variable K in terms of the
reference variable x. Notice that the amplitude densities
(center panels) of the fragments of the signals x, (t) and x,(t)
shown in the left-hand panels of the figure are identical.
Notice also that the modulating signals K,(t), K,(2), and
K;(t) are identical for the respective modulated densities of
the signals x, (t) and x,(t), while the modulated densities are
clearly different. Thus even though the amplitude densities
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and the modulating signals are identical, different reference
signals still result in different modulated densities.

Although the first argument in the density function c (D,
t) is always a threshold value, we will call the modulated
densities for K=constant, K=IxI, and K=I%I, for brevity, the
amplitude, counting (or threshold crossing), and accelera-
tion densities, respectively. We now proceed with the gen-
eral definitions of the multivariate modulated threshold
densities and the weighted means at thresholds.

9 Multivariate Threshold Densities Averaged with
Respect to Test Function

Time averaging with a time weighting function h(t) sig-
nifies transition from microscopic (instantaneous) densities

d(D-x) to macroscopic (time scale T) densities <3(D-x)?;.
Carrying out the same transition from microscopic to mac-
roscopic threshold domain can be done by a means of
averaging with respect to a test function fx(x), a standard
approach in such fields as electrodynamics (Jackson, 1975,
Section 6.7, for example) or plasma physics (Nicholson,
1983, Chapter 3, for example). We thus can define a (mul-
tivariate) macroscopic threshold density as a threshold aver-
age on a scale R, namely as

46
6D - = f & r =D - 1) = fo(D ), o)

where R is a characteristic volume element. We will assume
fz(X) to be real, nonzero in some neighborhood of x=0, and
normalized to unity over all space. It is simplest, though not
necessary, to imagine f(x) to be nonnegative. Such thresh-
old averaging with respect to a test function reflects finite
amplitude resolution of data acquisition systems. For digi-
tally recorded data, the lower limit for the characteristic
volume is the element of the threshold grid. We will further
use the shorthand notation

rd”rf,g(x—r)... =%

S

to denote the spatial averaging with the test function fx(x).

For hardware devices, the choice of fz(x) is dictated by
the threshold impulse response of the discriminators
(probes) (Nikitin, 1998, Chapter 7, for example). In soft-
ware, this choice is guided by computational considerations.
For the purpose of this disclosure, it is convenient to assume
that the total threshold impulse response function is the
product of the component impulse responses, that is, it can
be written as

n 48)
frlx)= l_[ Op, Fap; (x:);

i=1

where capital pi denotes product, as capital sigma indicates
a sum, that is,
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Unless otherwise noted, the subsequent computational
examples employ Gaussian test function, namely

. . (50)
fr(x) = l_[ Op; Fap;(x:) = nﬂ

i=1

Notice that, for the Gaussian test function,

i - n —x 51
I d'rfrr) =Fr) =l_[ﬂp‘.(x;):2’”l_[ erfc(A_g)’ v

i=1 i=1

where erfc(x) is the complementary error function
(Abramowitz and Stegun, 1964, for example). Fx(X) should
be interpreted as threshold step response.

FIG. 6 illustrates an optical threshold smoothing filter
(probe). This probe consists of a point light source S and a
thin lens with the focal length f. The lens is combined with
a gray optical filter with transparency described by f,(x).
Both the lens and the filter are placed in a XOY plane at a
distance 2f from the source S. The lens-filter combination
can be moved in the XOY plane by the incoming signal r so
that the center of the combination is located at

2fr
4f - R

in this plane. Then the output of the filter is proportional to
the intensity of the light measured at the location D=(D,, Dy)
in the D,-0-D, plane parallel to the XOY plane and located
at the distance R from the image S' of the source S (toward
the source). That is, the output of this filter can be described
by fx(D-r).

When a test function is employed for threshold averaging,
Eq. (37) can be rewritten for the multivariate modulated
threshold densities as Threshold-Time Averaged Density,
namely as

(K frID = x$)r
(K(shr

cxk(D, 1) = (52)

<1<<s)ﬁ 0, T, [0 - 551
i=l r

(K(shr

As for a scalar variable, in this disclosure we shall call the
multivariate modulated threshold densities for K=constant
the amplitude densities, and the densities for
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L
=) Gi/AD)?
i=1

the (multivariate) counting densities. The amplitude density
thus indicates for how long the signal occupies an infini-
tesimal volume in the threshold space, and the counting
density indicates how often the signal visits this volume. For
example, the amplitude density will indicate the number of
cars at a certain intersection (that is, at the intersection
positioned at D) at a certain time, and the counting density
will describe the total traffic flow through this intersection at
a given time. Carrying out the threshold averaging in Eq.
(41), we can write the equation for the mean at reference
threshold as

(K$)fr[D = x$)])r
(rlD =2y

(43)
MK} (D, D) =

<1<<s)ﬁ O, Fan, [0y - 3151

i=1 T

( 1100, 7a, s - o0

T

Notice that, unlike in the definition of the modulated thresh-
old density, the variable K no longer has to be a scalar. In the
traffic example above, it is obvious that the same traffic flow
(number of cars per second) can be achieved either by low
density high speed traffic, or by high density low speed
traffic. The ratio of the counting rates and the amplitude
density will thus give us the average speed at the intersec-
tion. If the variable K is different from the speed—for
example, it is the rate of carbon monoxide emission by a
car—then the mean at reference threshold will indicate this
emission rate at location D, and it may (for example, because
of the terrain or speed limit) or may not depend on the
location.

In this disclosure, we assume the validity of Eq. (48), and
thus the explicit expressions for the amplitude density b(D,t)
and the counting density r(D.,t) are as follows:

u 54)
o0.0=([ |09, Fan, [0 - 553
i=1 T
for the amplitude density, and
(55)
S5 T e
i=1
(D, 1) = S r

(1>52r )

i=1 T

for the counting density. In Eq. (55), the numerator in the
right-hand side is proportional to the counting rate. Explic-
itly, the expression for the counting rates reads as
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D) (56
D=5 22 ] ]_[AD 0, Fany [0y 315}

T

A type of problem addressed by Eq. (56) might be as
follows: How often does a flying object cross a radar beam?

FIG. 7 shows a simplified diagram illustrating the trans-
formation of an input variable into a modulated threshold
density according to Eq. (52). The sensor (probe) of the
acquisition system has the input-output characteristic fR of
a differential discriminator. The width of this characteristic
is determined (and may be controlled) by the width, or
resolution, parameter R ,. The threshold parameter of the
probe D signifies another variable serving as the unit, or
datum. In FIG. 7, the input variable x, (t) is a scalar or vector,
or a component of an ensemble. For example, a discrete
surface (such as an image given by a matrix) can be viewed
as a discrete ensemble, being scalar for a monochrome
image, and a 3D-vector for a truecolor image. The output of
the probe then can be modulated by the variable K, (t), which
can be of a different nature than the input variable. For
example, K, (t)=constant will lead to the MTD as an ampli-
tude density, and K (1)=%, (1)l will lead to the MTD as a
counting densr[y/rate Both the modulating variable K,, and
its product with the output of the probe K fR can then be
time-averaged by a convolution with the tihe weighting

function h(t;T), leading to the averages <K, f R,,(D_Xp)>T and

K27 #_ The result of a division of the latter average by the
former will be the modulated threshold density Ck, (D,1).
Notice that all the steps of this transformation can be
implemented by continuous action machines.

10 Time Averaging of Multivariate Threshold
Densities by RC,,, Impulse Response Functions

Let us consider a specific choice of a time weighting
function as follows:

&)

h,(D) = ——1"e” T0(t)

YTn+l

This is a response of a circuit consisting of one RC differ-
entiator and n RC integrators (all time constants RC=T) to
a unit step of voltage 8(t). Thus we shall call such weighting
function an RC,, impulse response. FIG. 8 shows the RC,,
time weighting functions for n=0 (exponential forgetting),
n=1, and n=2.

Differentiation of h,(t) leads to

1 (58)
In(0) = [ -1 (D) = By (2]
for n = 1, and
. 1 (59)
ho() = T [6() = ho(2)]
forn=0.

An exponential factor in time weighting functions is
ubiquitous in nature as well as in technical solutions. In
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particular, RC,, impulse response time averaging functions
are quite common, and easily implementable in software as
well as in various devices. Although normally the time
weighting function does not need to be specified in detail, an
exponential factor in the time weighting function allows us
to utilize the fact that (e*)'=e™. In particular, the relations of
Egs. (58) and (59) allow us to simplify various practical
embodiments of AVATAR. This will become apparent from
further disclosure.

11 Shape Recognition and Time Evolution of
Densities, Displaying Densities and their Time
Evolution

As has been mentioned earlier in this disclosure, the main
purpose of the analysis of variables through their continuous
density and distribution functions is twofold: (1) to facilitate
the perception through geometric interpretation of the
results, and (2) to enable the analytical description by
differential methods. Let us first address the former part of
this goal, that is, the visual presentation of the densities and
the interpretation of the underlying qualities of the variable
based on these observations.

Let us first notice that the amplitude density at a given
threshold D is proportional to the time the variable spends
around this threshold, and thus is proportional to the average
inverted (absolute) slope of the variable at this threshold.
One might say that the amplitude density is a measure of
“flatness” of the signal. For example, the amplitude density
generally increases with the increase in the number of
extrema at the threshold D. The counting density is propor-
tional to the number of crossings, or “visits”, of this thresh-
old by the variable, and the acceleration density is generally
proportional to the density of sharp turns (such as extrema
and inflection points) of the variable at this threshold. Thus
the acceleration (K=Ikl), amplitude (K=1), and counting (K=
IXl) densities complement each other in a manner necessary
for selective shape recognition of a signal, as illustrated in
FIGS. 94 and 95. The left columns of the panels in these
figures show the fragments of three different signals in
rectangular windows. The second columns of the panels
show the amplitude densities, the third columns show the
counting densities, and the right columns show the accel-
eration densities for these fragments. These figures illustrate
that the acceleration and counting densities generally reveal
different features of the signal than do the amplitude den-
sities. For the fragment x, (t) in FIG. 9a (the upper row of the
panels), Ix(t)l=constant, and thus the counting and the ampli-
tude densities are identical. For the fragment x,(t) in FIG. 9a
(the middle row of the panels), k(t)=constant, and thus the
acceleration and the amplitude densities are identical.

The example in FIG. 10 shows time dependent accelera-
tion densities, threshold crossing rates, and amplitude den-
sities computed in a 1-second rectangular moving time
window for two computer generated non-stationary signals
(Panels 1a and 15). Panels 2a and 256 show the acceleration
densities, Panels 3a and 35 show the threshold crossing
rates, and Panels 4a and 45 show the amplitude densities.
The signals represent sequences of (nonlinearly) interacting
unipolar Poisson-distributed random pulses, recorded by an
acquisition system with an antialiasing bandpass RC-filter
with nominal passbands 0.5-70 Hz at -3 dB level. The
sequences of the pulses before interaction are identical in
both examples, but the rules of the interaction of the pulses
are slightly different. These differences are reflected in the
shape of the resulting signals, which can in turn be quanti-
fied through the displayed densities and the rates.
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As an example of the interpretation of the displayed
densities, consider the stretch of the signals in the interval 45
through 70 seconds. For both signals, the amplitude density
(Panels 4a and 4b) is highest at the lowest amplitude, and is
approximately uniform at other thresholds. This is likely to
indicate that the signals in this time interval consist of
relatively narrow tall pulses of comparable amplitude, origi-
nating from a flat background. The approximate uniformity
of the counting rates (Panels 3a and 35) between the lowest
and the highest thresholds confirms the absence of the
secondary extrema, that is, these are single pulses. The
increased rates in the intervals 50 to 60 seconds and 65 to 70
seconds indicate that there are more pulses per unit time in
these intervals than in the intervals 45 to 50 and 60 to 65
seconds. An approximate equality of the acceleration den-
sities (Panels 2a and 25) at the highest and lowest thresholds
is likely to indicate that these pulses might have sharp onsets
and sharp “tails”, in order for the “sharpness” of the peaks
to be equal to the combined “sharpness” of the onsets and
the tails.

Earlier in this disclosure, we introduced a new type of
rank filtering, which is applicable to analysis of scalar as
well as multivariate densities. In Eqgs. (24) and (25), we
introduced the quantile density, domain, and volume. Let us
now illustrate how these quantities are applicable to the
analysis of scalar variables. Panel I of FIG. 11 shows the
fragment of the signal from Panel 1a of FIG. 10 in the time
interval between 7 and 29 seconds. The amplitude density of
this fragment is plotted in Panels II through IV. In these
panels, the quartile densities f, , (Panel II), f, , (Panel IIT),
and f;,, (Panel IV) are shown by the horizontal lines. These
lines intersect the density in such a way that the shaded areas
are equal to %4, V4, and ¥4, respectively. Then the respective
quartile domains will be represented by the intervals on the
threshold axis confined between the left and the right edges
of these areas, and the respective quartile volumes will be
the sums of the lengths of these intervals.

In FIGS. 124 and 125, the quantile densities, volumes,
and domains are displayed as time dependent quantities
computed in a 1-second rectangular sliding window. Panels
1a and 4aof FIG. 12a show the median densities, computed
for the amplitude and the counting densities of the signal
from Panel 1a of FIG. 10. Panels 15 and 45 of FIG. 125
show the respective median densities for the signal from
Panel 15 of FIG. 10. Panels 2a and 5a of FIG. 124, and
Panels 26 and 55 of FIG. 125, show the median volumes of
the amplitude and the counting densities of the respective
signals. As can be seen from these examples, both quantile
densities and quantile volumes characterize the total width
of the densities, that is, the total size of high density regions
in the threshold space. Panels 3a and 6a of FIG. 124, and
Panels 36 and 65 of FIG. 125, display the quartile domains,
with the median domain shaded by the gray color, the =%
domain shaded by the light gray, and the first quartile
domain shaded black. These examples illustrate how the
quantile domain reveals the location of the high density
regions in the threshold space.

Earlier in this disclosure, we adopted the restricted defi-
nition of a “phase space” as the threshold space of the values
of the variable, complemented by the threshold space of the
first time derivative of this variable. Thus for a scalar
variable the modulated threshold densities in such phase
space are the two-variate densities. The introduction of the
phase space densities expands the applicability of the den-
sity analysis, and allows more detailed study of the changes
in the variables. For example, FIG. 13 provides an illustra-
tion of the sensitivity of the phase space threshold densities
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to the signal’s shape. The first column of the panels in the
figure shows the fragments of three different signals in
rectangular windows. The second column of the panels
shows the phase space amplitude densities

b(D D)0, Fap, [0~ 0p, Fap [D=36)Pr. (60)
and the third column displays the phase space counting
densities

W) () N

Op, Fap, [Dx = x(5)10p, Fap, [Ds = 56(5)]>T
FRVIIPRY)
NEIRITI

This figure also illustrates that while the amplitude density
is indicative of the “occupancy” (that is, the time the
variable occupies the infinitesimal volume in the phase
space), the counting density reveals the “traffic” in the phase
space, that is, it is indicative of the rates of visiting a small
volume in the phase space.

The example in FIG. 14 shows time dependent phase
space amplitude densities computed according to Eq. (60) in
a 1-second rectangular moving time window for two com-
puter generated non-stationary signals shown in Panels 1a
and 156 of FIG. 10. The figure plots the level lines of the
phase space amplitude densities (Panels 1a and 2a), at times
indicated by the time ticks. Panels 16 and 26 show the time
slices of these densities at time t=t,.

FIG. 15 shows time dependent phase space counting rates

r(Dx, Dy, 1) =

R(D, Do)~ (D )2+(ED, )26, F apy [D=5(5))p,

Fap /D), (62)
computed in a 1-second rectangular moving window for the
two signals shown in Panels 1a and 15 of FIG. 10. The figure
plots the level lines of the phase space counting rates (Panels
1a and 2a) at times indicated by the time ticks. Panels 15 and
2b show the time slices of these rates at time t=t,. As was
discussed in the explanation of FIG. 10, the general shape of
the pulses around this time for both signals is similar. Thus
the difference in the phase space crossing rates apparent
from these time slices results mostly from the small differ-
ences in the shape of the “tops” of these pulses.

FIGS. 16 and 17 display the boundaries of the median
domains for the phase space amplitude and counting densi-
ties, respectively. The upper panels of these figures short the
respective boundaries for the signal of Panel 1aof FIG. 10,
and the lower panels show the median domain boundaries
for the signal of Panel 156 of FIG. 10.

The examples in FIGS. 9 through 17 illustrate the use-
fulness of AVATAR for visual assessment of various features
of a signal, and of the evolution of these features in time.
Although FIGS. 13 through 17 deal with the phase space
densities of a scalar variable, it should be obvious that
densities of any two-dimensional variable can be treated in
the same way. For instance, the same technique will apply
for describing the time evolution of the population in a
geographic region (amplitude density) and for mapping out
the routes of migration of this population (counting density).
FIG. 16, for example, can represent the time evolution of a
quantile domain of the population of a biologic species, that
is, the locations of the largest number of specimens per unit
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area in a region. Then FIG. 17 will represent the time
evolution of the respective quantile domain of the traffic of
the species, that is, the regions of the most active movement
of the species.

11.1 Eliminating the Digitizatiom-Computation
Steps in Displaying Densities and their Time
Evolution: Direct Measurement by Continuous
Action Machines

Since many physical sensors have input-output charac-
teristics equivalent to those of the probes in this disclosure,
there is a large number of feasible physical embodiments of
AVATAR for displaying the modulated threshold densities
and their time evolution by continuous action machines. In
this subsection, we provide several illustrative examples of
such embodiments. The underlying motivation behind con-
structing an analog machine directly displaying the densities
is schematically stated in FIG. 18.

As the first example, FIG. 19 outlines a conceptual
schematic of a simple device for displaying time dependent
amplitude densities of a single scalar signal. An electron gun
in a cathode-ray tube produces a beam of fast electrons. The
tube contains a pair of vertical deflecting plates. By feeding
avoltage to this pair of plates, we can produce a proportional
displacement of the electron beam in the vertical direction.
The screen of the tube is coated with luminophor with the
afterglow half-time T, ,=T In 2. We assume that the bright-
ness of the luminescent spot on the screen is proportional to
the intensity of the electron beam, and is described by
dyFA{Y) when the voltage across the deflecting plates is
zero. Then the brightness of the displayed band on the
screen, at any given time, will correspond to the amplitude
density of the input signal x(t), computed in the exponential
moving window of time (RC,,) with the time constant T.
This band can then be projected on a screen by, for example,
a (concave) mirror M. By rotating this mirror, we can display
the time evolution of the amplitude density of x(t). If we now
modulate the intensity of the electron beam by the signal
K(t), then the brightness of the displayed picture will be

proportional to <Kd,F, (Y-x)>,. For example, when K(t)=
% (t)l, the screen will display the threshold crossing rates. A
simple conceptual schematic of such a device for displaying
time dependent threshold crossing rates of a signal is illus-
trated in FIG. 20. Note that by displaying only the lines of
equal intensity, or by thresholding the intensity, we will
reveal the boundaries of the respective quantile domains.

FIG. 21 provides an illustration for possible hardware
implementation of a device for displaying time slices of the
phase space amplitude densities. An electron gun in a
cathoderay tube of an oscilloscope produces a beam of fast
electrons. The tube contains two pairs of mutually perpen-
dicular deflecting plates. By feeding a voltage to any pair of
plates, we can produce a proportional displacement of the
electron beam in a direction normal to the given plates. The
screen of the tube is coated with luminophor with the
afterglow half-time T, ,=T In 2. We assume that the bright-
ness of the luminescent spot on the screen is proportional to
the intensity of the electron beam, and is described by
OxF o (x)9F A {Y) when the voltage across the deflecting
plates is zero. If the input signals are x(t) and X(t), respec-
tively, then the displayed picture on the screen, at any given
time, will correspond to the phase space amplitude density
of'the input signal x(t), computed in the exponential moving
window of time (RC,,) with the time constant T. Thus, the
screen will display figures similar to those shown in the
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second column of the panels in FIG. 13, and in Panels 15 and
2b of FIG. 14. If we now modulate the intensity of the
electron beam by the signal K(t), then the brightness of the
displayed picture will be proportional to <9 F o fX-x)0,F Ay
(Y-x),. For example, when K()=V(XAY)*+(XAX)>? the
screen will display the time slices of the phase space
threshold crossing rates of the input signal x(t). computed in
the exponential moving window of time (RC,,) with the
time constant T. Thus, the screen will display figures similar
to those shown in the third column of the panels in FIG. 13
and in Panels 15 and 25 of FIG. 15. A simple conceptual
schematic of such a device for displaying time slices of the
phase space threshold crossing rates is illustrated in FIG. 22.

One skilled in the art will now recognize that the task of
displaying the densities can also be achieved by a variety of
other physical devices. In addition to displaying the modu-
lated densities and their time evolution, these devices can
also be modified to display the quantile domain, density, and
volume, the means at reference thresholds, various other
quantities of the MTDs such as their level lines, and to
accomplish other tasks of AVATAR. Some of the additional
embodiments of such devices will be described later in this
disclosure.

12 Using Means at Reference Thresholds for
Detection and Quantification of Changes in
Variables

As has been indicated earlier in this disclosure, a com-
parison of the mean at reference threshold with the simple
time average will indicate the interdependence of the input
and the reference variables. For the purpose of this disclo-
sure, we will adopt one of many possible ways to measure
such dependence within the quantile domain as follows:

HM K} (D, 1) = (K7l
KK)7l

(63)

2,D.n= 0L fr(D = X))y — £y,

where f_(0) is the quantile density defined by Eq. (24), and
we will assume that the norm is computed simply as the
distance in the Euclidean space. Eq. (63) represents an
estimator of differences in the quantile domain between the
mean at reference threshold and the time average.

FIG. 23 displays the values of the estimator = (D,t) of Eq.
(63) in ¢=%10 quantile domain, computed for the two com-
puter generated nonstationary scalar signals (Panels 1a and
15), used in a number of our previous examples. Panels 2a
and 2b display the values of the estimator for K=IXI, and
Panels 3a and 35 display these values for K=fI.

13 Modulated Cumulative Distributions

As follows from Eq. (9), the time dependent Modulated
Cumulative Threshold Distribution (MCTD) Cg(D,t), or
Threshold-Time Averaged Cumulative Distribution, is
defined as

D (64
Cx(D, D)= f d"reg(r, 1)

_ (K6)FR[D=x(s)])r
(KG)r
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-continued

<K<s>ﬁ Tao, 1Di - (5]
i=1 r

(K(shr

where C {(D,t) is the modulated threshold density given by
Eq. (52). It is easy to see from Eq. (64) and from the
definition of the Heaviside unit step function, Eq. (4), that all
equations for the counting, amplitude, and acceleration
densities (for example, Eqs. (54), (55), (60), and (61)) are
valid for the cumulative distributions as well, provided that
the symbols ‘b’ ‘r’, ¢’, ‘d’, and ‘d,,’ in those equations are
replaced by ‘B’, ‘R’, *C°, ‘0°, and ‘F’, respectively.

Note that the transition from the densities to the cumu-
lative distribution functions is equivalent to the threshold
integration of the former, and thus the principal examples of
the embodiments for the densities can be easily modified for
handling the respective cumulative distributions. For
instance, the embodiments of FIGS. 19 and 20 can be easily
converted to display the cumulative distributions instead of
the densities. Then, for example, the lines of equal intensity
on the screen will correspond to the level lines of these
cumulative distributions, and thus will be equivalent to the
outputs of the respective rank filters.

Note also that the ability to compute or measure the time
dependent threshold densities and cumulative distributions
for a signal gives access to a full range of time dependent
statistical measures and estimates, such as different thresh-
old moments (e.g., mean and median, skew, kurtosis, and so
on) with respect to these distributions. Although the defining
equations for the threshold densities and cumulative distri-
butions are given for a continuous variable or signal, in
numerical computations these quantities can be calculated in
finite differences. Clearly, the introduction of threshold
averaging alleviates the computational problems caused by
the singularity of the delta function.

14 Unimodal Approximations for Ideal Modulated
Densities and Cumulative Distributions

For time independent thresholds, numerical (or hardware)
computation of densities and cumulative distributions
according to Egs. (52) and (64) should not cause any
difficulties. However, in the equations for rank normaliza-
tion. Egs. (12) and (13), and for filtering. Eqs. (17) and (18),
densities and cumulative distributions appear with thresh-
olds dependent on time, and their evaluation may present a
significant computational challenge.

This challenge is greatly reduced when the thresholds
vary slowly, which is usually the case in rank filtering. In
such cases, it might be sufficient to approximate (replace)

SRIDO-x(s)]>, by the first term in its Taylor expansion,

namely by <{fz[D(t)-x(s)]>;, and higher order terms can be
retained when necessary. This approximation will be our
prime choice in most embodiments of AVATAR discussed
further in this disclosure. For rank normalization, however,
this approach is only adequate when certain relations
between the input and reference signals are held, and thus
different approximations should be developed.

Let us first develop a unimodal approximation for the
ideal modulated density function (¢K»,)~'<K&(D—x),, that

is, the density function resulting from the measurements by
an ideal probe. Although we will later present more accurate
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approximations for rank normalization, the unimodal
approximation has certain merits of its own, e.g., simplicity
of implementation and analytical treatment of the results. To
develop such unimodal approximation, we can use, for
example, the integral representation of the delta function as
(Arfken, 1985, p. 799, for example)

8(D-x) = % f: due P, (65)
The expression for the density can thus be rewritten as
L Lo e 66)
—X)r =5 T .
T KaD =0y = o I

and the time averages in the right-hand side of Eq. (66) can
be expressed as

Ke"‘"")

. (67)
e ®r

N

(Ke ™)y

— o)
=€ .
<K>T

It is worth mentioning that the cumulant function A(u)=ln

((K>,~<Ke™"*),) corresponds to the thermodynamic char-
acteristic function (free energy divided by kT) in statistical
mechanics (Kubo et al., 1995, for example). We now notice
that the real part of A(u) has a global maximum at u=0.
Therefore, the main contribution of the integrand to the
integral in Eq. (66) man come from the region around u=0
(see, for example, Erdeélyi, 1956, Copson, 1967, or Arfken,
1985). Thus we can expand A(u) in Taylor series around u=0
as

(—iu* 1 (©8)

K - —
" 2K:

0 . 2
5k
n:

n=1

Alw) = Kioi
=l

n!

where

K, =K, (69)

Truncating this expansion after the quadratic term, we
substitute the result in Eq. (66) and easily arrive at the
following expression:

a0

exp 1 (D-K)
1 2 Ky - K%,

——(K&(D - x))p ~ ,
v 27(Kz0 — Ky)

(K)r

where K =K K, ™.
Unimodal approximations for higher-dimensional densi-
ties can be developed in a similar manner. For example,
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1 ] 00 . 71
(5(Ds 05D, — ), = mr duelwxf dve' Py ey, (71)

where
Alw, v) = In€e™ ™) —iudx) + a)] — (712)
1
5{142 ) = (0] + 2uf{ayy = (X)) + 2 LG7) = YD)
This results in
1 (73)

(ODc = 50D, = )y =

1
2no oy V1 -1? Xexp{— 2(1-r%)
D= @) 2D =Dy =) Dy =) }}

2
U—X

2
fo e a3

where o, = (%) - (0%, o, = () - )%,

and r = () = )N [y 7y

The approximations of Egs. (70) and (73) are somewhat
accurate, for example, on a large time scale, when the signals
x(t) and y(t) represent responses of (linear) detector systems
to trains of pulses with high incoming rates (Nikitin et al.
1998; Nikitin, 1998, for example), Poisson distributed in
time. FIG. 24 illustrates the adequacy of the approximation
of Eq. (73) for two-dimensional amplitude densities of such
signals. The top panel of this figure shows the signals x(t)
and y(t)=x(t) in a rectangular window of duration T, where
x(t) is the response of an RC,, filter to a pulse train with an
energy spectrum consisting of two lines of equal intensity
with one having twice the energy of the other. The lower

left panel shows the measured density <9,F,p (D~
x)d DyF Ap,(D,=y), (with small AD_and AD ), and the lower

Y

right panel shows the density computed through Eq. (73).

More generally, Egs. (70) and (73) are accurate when x(t)
and y(t) (on a time scale T) are sums of a large number of
mutually uncorrelated signals. Obviously when x(t) and y(t)
are (nonlinear) functions of such sums, simple transforma-
tions of variables can be applied to modify Egs. (70) and
(73). For example, if Eq. (70) is adequate for the signal x(t)
and, in addition, K, ,*<<K,,, then the following approxima-
tions are also adequate:

L ks -y 2D (—L) 74
(K)r o= V21 DKo 2K10
for the signal z(t)=x*(t), and
1 o2 D? 75
——(Kd(D - = -——
i ko0 =00y ~ L2 -5

for z()=x(t)l.
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When the signal x (1) is a sum of two uncorrelated signals
X, (1) and x,(1),

76
(5D — by = f de{d(e— 10D — £~ xp)yy = e

- f de(d(e - 1)r{3(D - £ - ).

—ca

and thus the resulting density is just the convolution of the
densities of the components x,(t) and X,(t). This approach
can be used, for example, when the signal is a sum of a
random noise component and a deterministic component
with known density functions. FIG. 25 illustrates this for the
noisy signal x,=sin(t). The signals x, (t), x,(t), and x, (1)+X,
(t) are shown in the left column of the panels, and the
respective panels in the right column show the amplitude
densities. The signal X,(t) is random (non-Gaussian) noise.
The amplitude density of the sinusoid x,(t) in a square
window of length T=27n is computed as

s B 1 27md 5 _ (77)
OID - x5y = 5 fo 181D — cos)] =
22l o _ 2
_ LZ f d[é(f W _ ‘0(1 D% ’
2rn = Jo |sin(z)| nsinfarccos(D)]
where
e = (- Dfarccos(D) + S 12k + 1 - (=1F], 8)

In the lower right panel, the measured density of the
combined signal is shown by the solid line, and the density
computed as the convolution of the densities b, (D) and
b,(D) is shown by the dashed line.

Substitution of Eq. (70) into Eq. (64) leads to the approxi-
mation for the time dependent cumulative distribution as
follows:

1 a9
m(Ke(D - X)) =

Kio—D

V 2K — Ko)

1
3 erfe

where erfc(x) is the complementary error function
(Abramowitz and Stegun, 1964, for example).

The unimodal approximations of this section are of lim-
ited usage by themselves, since they are adequate only for
special types of a signal on a relatively large time scale. For
example, the approximation of Eq. (70) is generally a poor
approximation, since every extremum of the signal x(t)
inside of the moving window may produce a singularity in

the density function (KK>,)~'<K8(D-x)>. This can be clearly
seen from Eq. (40), which shows that a modulated density
might be singular whenever %(t,)=0, with the exception of
the counting density. For the latter, the approximation of Eq.
(70) might be an adequate choice for some usages. This is

illustrated by FIG. 26, which shows the amplitude <3(D-
X, and the counting ((K>,)~<K8(D-x)», densities of the
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fragment of the signal displayed in the upper panel. One can
see that the Gaussian unimodal approximation (dashed lines)
is more suitable for the counting density than for the
amplitude density. The latter is singular at every threshold
passing through an extremum of x(t).

However, the unimodal approximations of this section
might be a good practical choice of approximations for rank
normalization, since the main purpose of the latter is just
providing a “container” in the threshold space, where the
reference variable is likely to be found. This will be dis-
cussed in more detail further in the disclosure.

15 Rank Normalization

Although Egs. (12) and (13) introduce rank normalization
for vector fields, in various practical problems this normal-
ization may be more meaningfully applied to scalar vari-
ables and fields, e.g., to the selected components of vector
variables. For the time being, we will also consider only
single scalar or vector variables rather than the fields. As will
be illustrated further in the disclosure, the transition to the
fields can always be accomplished by spatial averaging.

Let us write a reference threshold distribution, modulated
by some associated signal K, as

1 80
T (KOFR[D = r(s)rs i

oD 0= Tetony

where r(t) is the reference signal, i.e., the signal for which
the distribution is computed.

Then

YO = Ck ¥, 1] = ﬁ(K(S)TR [x(@) = r)Dr e

is a signal, rank normalized with respect to the reference
distribution C (D,t). Eq. (81) is thus a defining equation for
an Analog Rank Normalizer (ARN). In other words, an ARN
outputs the rank of the value of x(t) with respect to the
sample of the values of the reference variable r(t). For
example, if the reference distribution for normalization of a
scalar variable x(t) is provided by a Gaussian process with
the mean X and the variance o, then

(82)

E—x([)}
V2o ’

1
y(o) = zerfc[

where we have neglected the threshold averaging, that is, we
assumed that F, ,(x)=0(x). Using Gaussian approximation
for modulated threshold densities of a scalar reference r(t),
Eq. (70), we can write the following expression for the
Gaussian normalization:

1 . (83)
y() = zer c|

Kyo(0) = x(0 }
2[K20(0) - K§(0)]

where
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-continued

(K ™)p (84)

Ky = ———L.

(K ™

Let us now observe that
MOES (85)
[ @ Do - stoiCriD 0~ [ fyIp=s0Ce D,

where we replaced the Dirac d-function 8(x) by the response
of a probe f(x) with a small width parameter R. Thus, for
a small width parameter R, the practical embodiment of
ARN reads as follows:

PO D-X(D]Ce, D, 1P.P, 86)
where we used the shorthand notation for the threshold
integral as

(-2 = 87

rm..._

FIG. 30 shows a simplified flowchart of an analog rank
normalizer according to Eq. (86).

For the purpose of “confinement” of the variable in the
threshold space of the reference variable, rank normalization
can be defined by means of a discriminator with arbitrary
input-output response, namely by

n (88)
YO = FrDrn) = x(0] = | | Fa, 0 [Dri0) - x:(0),

i=1

where D,(t) is indicative of the central tendency (such as
mean or median) of the reference density ¢, (D,t), and R (t)
is indicative of the width (such as standard or absolute
deviation, or such as FWHM) of the reference density
Cx(D.D). For instance, using the mean and standard devia-
tion of the reference distribution as the displacement and
width parameters, respectively, for a scalar variable we have

o) = T\/m [K1o(0) = x(D)]. (89)

Eq. (89) thus performs rank normalization as transformation
of the input signal by a discriminator with the width param-
eter V2[K,o(1)-K,,*(t)], and the displacement parameter
Kyo().

Rank normalization can also be accomplished through
evaluating the integral of Eq. (81) by straightforward means.
For instance, for a causal time weighting function.

; ©0)
(Falx() — by = f s h(t = 5) FR[x(0) ~ r(s)]
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-continued

= fmdsh(s)fie[x(t)—r(t—s)],
0

which for a rectangular time function of duration T leads to

1 (7 o1
Frlxo) =ris)r = fo ds Frlxt) - r(t - s)]

1 N
x5 2 Trlx(0) = re=n An),
n=0

where Ar=T/N.

One of the main usages of the rank normalization is as
part of preprocessing of the input variable, where under
preprocessing we understand a series of steps (e.g., smooth-
ing) in the analysis prior to applying other transformations
such as MTD. Since in AVATAR the extent of the threshold
space is determined by the reference variable, the rank
normalization allows us to adjust the resolution of the
acquisition system according to the changes in the threshold
space, as the reference variable changes in time. Such
adjustment of the resolution is the key to a high precision of
analog processing. In the next section, we provide several
examples of the usage of rank normalization.

16 Using Rank Normalization for Comparison of
Variables and for Detection and Quantification of
Changes in Variables

The output of a rank normalizer represents the rank of the
test signal with respect to the reference distribution. Thus
comparison of the outputs of differently normalized test
signals constitutes comparison of the reference distributions.
Various practical tasks will dictate different implementations
of such comparison. Let us consider several simple
examples of using rank normalization for comparison of
reference distributions.

First, let us define a simple estimator Q,,(t;q) of differ-
ences between the distributions C,(D,t) and C,(D,t) as

92)

Qan(t; ) = Cplya(0), 1] }
Calygn. 1= g '

In Eq. (92), y (1) is the level line (qth quantile) of the
distribution C(D,t). Clearly, when C_(D,t) and C,(D.,t) are
identical, the value of Q,,(t;q) equals the quantile value q.
FIG. 27 provides an example of the usage of the estimator
given by Eq. (92) for quantification of changes in a signal.
In this example, the signals are shown in Panels 1a and 15.
The distributions C,(D,t) are computed in a 1-second rect-
angular moving window as the amplitude (for Panels 2a and
2b) and counting (for Panels 3a and 356) cumulative distri-
butions. Thus y,(t) are the outputs of the respective rank
filters for these distributions. The estimators Q,_,(t;q) are
computed as the outputs of the Gaussian normalizer of Eq.
(83). The values of these outputs for different quartile values
are plotted by the gray (for q=%), black (for q=V4), and light
gray (for q=%). In this example, the estimator Q,,(t;q)
quantifies the deviations of C,(D,t) from the respective
normal distributions.
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Since the shape of the signal has different effects on the
amplitude, counting, and acceleration distributions, com-
parison of the signal normalized with respect to these
distributions can allow us to distinguish between different
pulse shapes. FIG. 28 provides a simplified example of the
usage of rank normalization for such discrimination between
different pulse shapes of a variable. Panel. 1 shows the input
signal consisting of three different stretches, 1 through 3,
corresponding to the variables shown in FIG. 9. Panel 11
displays the difference between C‘x‘,,h"(x,t) and Cl,,h"(x,t),
where the superscripts h, denote the particular choice of the
time weighting function as an RC,,, filter, and the reference
signal r is a Gaussian process with the mean K|, and the
variance K,,-K, %, where K are computed for the input
signal x(t). This difference is zero for the first stretch of the
input signal, since for this stretch the amplitude and the
counting densities are identical (see FIG. 9). Panel III
displays the difference between C‘x‘,,h"(x,t) and Cl,,h"(x,t).
This difference is zero for the second stretch of the input
signal, since for this stretch the amplitude and the accelera-
tion densities are identical (see FIG. 9). The distance
between the time ticks is equal to the constant T of the time
filter. FIG. 31 shows a simplified flowchart of a device for
comparison of two signals. In order to reproduce the results
shown in FIG. 28, Panels I and 111, the specifications of the
device are as follows:

x1(0) =x20) =r1(1) = ) = x(0); 93)
K (1) = constant;
K,(1) = |x(2)] for Panel II, K (1) = |%(r)| for Panel III;

1 X
Fap(x) = serte(-

h([) = ho(l‘) (RC10 ﬁlter).

FIG. 29 provides an additional example of sensitivity of
the difference between two rank normalized signals to the
nature of the reference distributions. Panel I shows the input
signal, and Panel II displays the amplitude density computed
in an RC,, window with the time constant T, equal to the
distance between the time ticks. Panel 111 plots the difference
between Cm,,h"(x,t) and Cl,,h"(x,t), where the reference sig-
nal r is a Gaussian process with the mean K,, and the
variance K,,-K |2, computed for the input signal x(t). The
magnitude of this difference increases due to broadening of
the amplitude density while the counting density remains
unchanged.

Even though various practical tasks will dictate different
implementations of comparison of variables through rank
normalization, the simple examples provided above illus-
trate that sensitivity of the difference between two rank
normalized signals to the nature of the reference distribu-
tions provides a useful tool for development of such imple-
mentations.

16.1 Estimators of Differences between Two
Cumulative Distributions

Since AVATAR transforms a variable into density and
cumulative distribution functions an expert in the art would
recognize that any of the standard techniques for statistical
analysis of data and for comparison of distributions/densities
can also be applied to time dependent quantification of the
signal and its changes. For example, one can use an esti-
mator of the differences between the two distributions C,
and C, as

20

25

30

35

40

45

50

55

60

65

56
D= DIAD-P[AL0)], (94)

where @ is some function, and A, is the statistic of a type

Aw(D) = r d" xh)H([Co(x, 1), Cp(x, 1), €alx, D), cp(%, D], ©>

where h is a truncation function, and H is some score
function. For convenience, we shall call C, the test distri-
bution, and C, the reference distribution. The statistics of
Eq. (95) thus quantify the differences and changes in the
input signal with respect to the reference signal. One can
think of any number of statistics to measure the overall
difference between two cumulative distribution functions
(Press et al., 1992, for example). For instance, one would be
the absolute value of the volume between them. Another
could be their integrated mean square difference. There are
many standard measures of such difference, e.g., Kolmog-
orov-Smirnov (Kac et al., 1955), Cramér-von Mises (Dar-
ling, 1957), Anderson-Darling, or Kuiper’s statistics, to
name just a few (Press et al, 1992, for example). For
example, one can use the statistics of a Cramér-von Mises
type (Darling, 1957, for example)

6
Aap = rdca(X)W[Ca(X)]W[Ca(X)— Cr(0)], oo

where w is a truncating function, and W is some score
function. Generalization of Eq. (96) to many dimensions is
straightforward as

Aw(®) = f " dC, (e, 0 WICalx, D] WICo(x, 1) — Cylx, 1] @D

o0

_ y Wd 8" C,(x, 1) c
_f:; X1 .. Im xan[ 2 (x, D]
W[Ca(x, 1) = Cp(x, D]

- f " x e, DWICax, 0] WICa(x, 1 — Cylx. 11,

where ¢,(x, 1) is the density function.

If C, is computed for the same signal as C,, then the
difference between C, and C, is due to either the different
nature of C, and C, (e.g., one is the amplitude, and the other
is counting distribution), or to the difference in the discrimi-
nators and time windows used for computing C, and C,.

Notice that rank normalization is just a particular special
case of the estimator of Eq. (97), when w(x)=1, W(x)=12-x,
and the test density is the instantaneous density, c,(D,t)=0
[D-x(1)], and thus

1 o8
Awpl0) = r d"DO[D~x(0) {5 + Co(D. - 01D~ x(1)} o9

= Cp[x(2), 1].

One should also notice that an estimator of differences
between two distributions of the type of Eq. (94) can be
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computed as a time average when the distribution functions
are replaced by the respective rank normalized signals. A
simplified example of such an estimator is shown in FIG. 32.
This figure plots the time averages of the absolute values of

the differences, <Cx ,x’“’(x,t)—C1 ,xh"(x,t)l>n for K=l and K=
%I, for the signal shown above the panel of the figure. The
distance between the time ticks is equal to the time constants
T of the time filtering windows.

16.2 Speech Recognition

Selectivity of comparison of the amplitude and counting
densities of a scalar variable can be greatly increased by
comparing these densities in the phase space of this variable.
Here under phase space we understand simply the two-
dimensional threshold space for the values of the variable as
well as the values of its first time derivative. FIG. 33
illustrates sensitivity of the amplitude and counting phase
space densities to differences in the signal’s wave form. The
panels in the left column show the sound signals for several
letters of the alphabet. The top signals in the individual
panels are the original input signals. The normalized input
signals and their normalized first derivatives, respectively,
are plotted below the original input signals. The middle
column of the panels shows the amplitude, and the right
column the counting densities of these pairs of normalized
signals. Notice that rank normalization of the components of
the signal allows us to more efficiently utilize the threshold
space, and thus to increase precision of analog processing.
Rank normalization also alleviates the dependence of the
phase space densities on the magnitude of these compo-
nents.

FIG. 34 illustrates how statistics of Eq. (97) can be used
in combination with rank normalization to address the
speech recognition problem. Panel I: The original speech
signal “Phase Space” is shown in the top of the panel. This
signal is normalized with respect to a Gaussian process with
the mean and variance of the original signal in a moving
rectangular window of 45 ms, and the result is plotted just
below the original signal. The bottom of the panel shows the
time derivative of the speech signal, normalized the same
way. Panel II: Time slices of the threshold density c¢(D,,
D,.t), where x and y are the normalized original signal and
its normalized derivative, respectively, and c(D,, D,,t) is
their amplitude density in the time window 45 ms. The slices
are taken approximately through the middles of the pho-
nemes. Panel III: Time slices of the cumulative distribution
C(D,, D,,t), where x and y are the normalized original signal
and its normalized derivative, respectively, and C(D,, D)
is their distribution in the time window 45 ms. The slices are
taken approximately through the middles of the phonemes.
Panel IV: The value of the estimator of a type of Eq. (94),
where the reference distribution is taken as the average
distribution computed in the neighborhood of the phonemes
“@”. The larger values of the estimator indicate a greater
similarity between the signals.

Employing different variables for analysis, different time
weighting windows (i.e., of different shape and duration),
different types of reference distributions for normalization
(i.e., Gaussian or of different random or deterministic sig-
nal), different functions for spatial averaging, different type
estimators of the differences between the two distributions
(i.e., different truncating functions h(x), and different func-
tions H(x) in Eq. (95)), and so on, one can reach any desired
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compromise between robustness and selectivity in identify-
ing various elements (e.g., phonemes or syllables) in a
speech signal.

As has been discussed previously, the embodiments of
AVATAR allow their implementation by continuous action
machines. For example, FIG. 35 outlines an approach one
may take for eliminating the digitization-computation steps
in the analysis and for direct implementation of speech
recognition in an optical device. Imagine that we can modu-
late the intensity of a beam of light in its cross section by
F (X-1F (Y -y), where x(t) and y(t) are proportional to
the components of the input signal. This can be done, for
example, by moving an optical filter with the absorption
characteristic F,(X)F,{Y) in the plane perpendicular to
the beam, as illustrated in Panel I of FIG. 35. In the example
of FIG. 35, the two components of the input signal are taken
as squared rank normalized original speech signal, and its
squared rank normalized first time derivative. A second
beam of light, identical to the first one, is modulated by
1-F xX-1)F,{Y-q) (Panel II), where r(t) and q(t) are
proportional to the components of the reference signal. In
the example of FIG. 35, the reference signal is taken as the
input signal in the neighborhood of the phonemes “a”. These
two light beams are projected through an (optional) optical
filter with the absorption characteristic h(X,Y) (Panel III)
onto the window of a photomultiplier, coated with lumino-
phor with the afterglow time T (Panel IV). We assume that
the photomultiplier is sensitive only to the light emitted by
the luminophor. Therefore, the anode current of the photo-
multiplier will be proportional to

A= | dxXdyh(x,7)<1-

F sl X F (Y=g F sl X-x)F s Y=y 1, (99)

and the variance of the anode current on a time scale T will

be proportional to {(A-1)*),. Thus any measurement of the
variance of the anode current will be equivalent to compu-
tation of the estimator of Eq. (94), as illustrated in Panel V
of FIG. 35. In this example, the larger variance corresponds
to a greater similarity between the test and the reference
signals.

16.3 Probabilistic Comparison of Amplitudes

As an additional example of usefulness of the rank
normalization for comparison of signals, consider the fol-
lowing probabilistic interpretation of such comparison. For
a nonnegative time weighting function h(t),

r dih(t) = 1,

we define x(s) to be a value drawn from a sequence x(t),
provided that s is a random variable with the density
function h(t-s). When h(t-s)=g,(t-s), then x(s) is a value
drawn from the first sequence, and when h(t-s)=g,(t-s), x(s)
is a value drawn from the second sequence. Now consider
the following problem: What is the (time dependent) prob-
ability that a value drawn from the first sequence is q times
larger than the one drawn from the second sequence!
Clearly, this probability can be written as
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P = [ dyefhon0cti{2.) aoo

o0

Substituting the expression for ¢, #'(y,t) (without spatial
averaging, for simplicity).

s 101
Ly, = f dsgy (1 - $)0ly - x()]. (101)

into Eq. (100) leads to

R T B B

o0 T
In Eq. (102),

e[

is the result of the rank normalization of the sequence x(t)/q,
with respect to x(t), in the second time window g,(t-s). P_(t)
is thus a simple time average (with the first time weighting
function) of this output.

The probabilistic estimator P_(t) can be used in various
practical problems involving comparison of variables. For
example, one of the estimators of changes in a nonstationary
sequence of data can be the ratio of the medians of the
amplitudes of the data sequence, evaluated in moving time
windows of sufficiently different lengths. This approach is
used, for instance, in the method by Dorfmeister et al. for
detection of epileptic seizures (Dorfmeister et al., 1999, for
example). In this method, the onset of a seizure is detected
when the ratio x,(t)/x,(t), where x,(t) is a median of the
squared signal in the ith window, exceeds a predetermined
threshold q. It is easy to show that the inequality x,(t)/z,(t)
Zq corresponds to the condition

1 (103)
Py(n) = 3

where P (1) is given by BEq. (102), in which x(t) is the
squared input signal. Thus the computational cost of the
seizure detection algorithm by Dorfmmeister et al. can be
greatly reduced, and this algorithm can be easily imple-
mented in an analog device.

17 Analog Rank Filters (ARFs)

In some applications, one might be interested in knowing
the quantile function for the signal, that is, in knowing the
value of D, (t) such that Ci(D,,t)=q=constant, where Cx(D,
t) is a cumulative distribution function. Thus D (t) is an
output of an analog rank (also order statistic, or quantile)
filter. For example. D, ,(t) is the output of an analog median
filter. Notice that, since the partial derivatives of C (D,t)
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with respect to thresholds are nonnegative, Cx(D,t}=q
describes a simple open surface in the threshold space.

For amplitudes of a scalar signal, or ensemble of scalar
signals, numerical rank filtering is a well-known tool in
digital signal processing. It is a computationally expensive
operation, even for the simple case of a rectangular moving
window. First, it requires knowing, at any given time, the
values of N latest data points, where N is the length of the
moving window, times the number of signals in the
ensemble, and the numerical and chronological order of
these data points. In addition to the computational difficul-
ties due to the digital nature of their definition, this memory
requirement is another serious obstruction of an analog
implementation of rank filters, especially for time weighting
windows of infinite duration. Another computational burden
on different (numerical) rank filtering algorithms results
from the necessity to update the numerically ordered list,
i.e., to conduct a search. When the sampling rate is high, N
can be a very large number, and numerical rank filtering, as
well as any analog implementation of digital algorithms,
becomes impractical.

In AVATAR, the output of a rank filter for a scalar variable
is defined as the threshold coordinate of a level line of the
cumulative distribution function. Since the partial deriva-
tives of the latter with respect to both threshold and time are
enabled by definition, the transition from an implicit C4(D,,
t)=q form to the explicit D,=D (t) can be made, for example,
through the differential equation given by Eq. (11) (see
Bronshtein and Semendiaev, 1986, p. 405, Eq. (4.50), for
example). The differentiability with respect to threshold also
enables an explicit expression for the output of a rank filter,
for example, through Eq. (23). Thus AVATAR enables
implementation of order statistic analysis in analog devices,
and offers significant improvement in computational effi-
ciency of digital order statistic processing.

18 Analog Rank Filters of Single Scalar Variable

AVATAR enables two principal approaches to analog rank
filtering, unavailable in the prior art: (1) an explicit analyti-
cal expression for the output of an ARF, and (2) a differential
equation for this output. In this section, we briefly describe
these two approaches.

18.1 Explicit Expression for Output of Analog
Rank Filter

An explicit expression for the output of an analog rank
filter can be derived as follows. Notice that

Dq:rdDDé(D—Dq), (104

where D_ is a root of the function Cx(D,t)-q, 0<q<l. Since,
at any given time, there is only one such root, we can use Eq.
(27) (Rumer and Ryvkin, 1977, p. 543, for example) to
rewrite Eq. (104) as

D0 = f ~ ADDex(D, 0O[Cx (D, D —q] (103)

o0

~ (Deg(D, D3 FaglCk(D, D) — g])2,
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where we replaced the Dirac d-function 8(x) by the response
of a probe 9, F, (x), and used the shorthand notation of Eq.
(87) for the threshold integral. Note that the rank filter
represented by Eq. (105) can be implemented by continuous
action machines as well as by numerical computations.
FIG. 36 illustrates the relationship between the outputs of
a rank filter and the level lines of the amplitude distribution
of'ascalar signal. Panel I of the figure shows the input signal
x(t) on the time-threshold plane. This signal can be viewed
as represented by its instantaneous density d[D—-x(t)].
Threshold integration by the discriminator F, (D) trans-
forms this instantaneous density into the threshold averaged
distribution F, ,[D—-x(t)] (Panel II). mils distribution is fur-
ther averaged with respect to time, and the resulting distri-

bution B(D,))=¢F,,[D-x(s)]>; is shown in Panel III. The
quartile level lines are computed as the outputs of the rank
filter given by Eq. (105), and are plotted in the same panel.
Panel IV shows the input signal x(t), the level lines of the
amplitude distribution for q=Y4, V4, and ¥4 (gray lines), and
the outputs of a digital rank order filter (black lines). It can
be seen from this panel that the outputs of the respective
analog and digital rank filters are within the width parameter
AD of the discriminator.

FIG. 37 repeats the example of FIG. 36 for the respective
analog and digital median filters for the discrete input
signals. The instantaneous density of a discrete signal can be
represented by 0[D-x(1)]|Z,0(t—t,), as shown in Panel I. Panel
11 shows the threshold averaged distribution F, ,[D—x(1)] 2,8
(t=t;), and Panel III of the figure compares the level line
B(D,)=CF s pID-x(5)1Z,8(s-1,)>,=%2 (solid black line) with
the respective output of a digital median filter (white dots).

FIG. 38 shows a simplified schematic of a device for
analog rank filtering according to Eq. (105).

18.2 Differential Equation for Output of Analog
Rank Filter

Substituting the expression for the modulated cumulative
threshold distribution function, Eq. (64), into Eq. (18), we
arrive at the differential equation for an analog rank filter of
a single scalar variable as follows:

_ 0 Ck(Dy D _ (Kilg— ChD,. 1) oo

T akDe D T (K (Dg D)

where the dots over D, and h denote the time derivatives,
and we used the fact that C.(D 0= In Eq. (106) we used
the superscripts h and h to indicate the particular choice of
the time weighting functions in the time integrals.

Notice that if h(t) is a time impulse response of an analog
filter, then Eq. (106) can be solved in an analog circuit,
provided that we have the means of evaluating C,."(D 0 and
c (D ). The example in FIG. 39 shows a simplified
schematic of such a device for analog rank filtering. Module

I of the device outputs the signal <K>Th[q—CKh(Dq,t)], and
Module 1T estimates <K>,”c.”(D V- The outputs of Modules
I and II are divided to form D,(t), which is integrated to
produce the output of the filter D, (t).

Notice also that in the absence of time averaging

exDg1y=c (D, V=0 pF ap/Dyt)-5(1)]. (107)

and

8,Cx(D,1)=0,C>(D,, H=C (D, 1)=

=X(DOpE ap[Dy(D)-%(1)]. (108)
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and thus Eq. (106) is still valid, although it leads to the trivial
result D, ()=x(t) for any value of q.

19 RC,,, Analog Rank Filters

Since RC,, time impulse response functions commonly
appear in various technical solutions, and are easily imple-
mentable in analog machines as well as in software, they are
a natural practical choice for h(t). In addition, the exponen-
tial factor in these time weighting functions allows us to
utilize the fact that (e*)'=e", and thus to simplify various
practical embodiments of AVATAR. Substitution of Egs.
(58) and (59) into Eq. (106) leads to the following expres-
sions for the analog rank filters:

(109)

b g -G Dy, 0]
! KK (D, )

for n21, and

K[g = Fap(Dg —x)]

Fio R
T(K)r" g’ (Dg 1)

b - (110)

for the exponentially forgetting (RC,,) filter.

20 Adaptive Analog Rank Filters (AARFs)

For practical purposes, the averages {fz[D(t)-x(s)]>, and
FrIDM)-x(s)]>7 in the expressions for analog rank filters
can be replaced by <fz[D()-x(s)]>; and <Fz[D{)-x(s)]>,
respectively. However, since we allow the variable x(t) to
change significantly over time, the size of the characteristic
volume R needs to be adjusted in accordance with these
changes, in order to preserve the validity of these approxi-
mations. For instance, the adaptation scheme can be chosen
as

AD=AD(f)=e+ro(?), (111)
where € is the minimal desired absolute resolution, o” is the
variance of the input signal, 0®(t)=K,,-K,,?, and r<<l1 is a
small positive number. As a rule of thumb, r should be
inversely proportional to the characteristic time T of the time
weighting function. Other adaptation schemes can be used
as needed. The preferred generic adaptation should be such
that the width parameter AD(t) is indicative of variability of
D, (). For example, such adaptation can be as
AD=AD@)=e+rAD AP D) A, (112)
where € is the minimal desired absolute resolution, and r<<1
is a small positive number.
Then the equation for adaptive analog rank filters
(AARFs) reads as

K~ (K Faniw[Dgls) ~ x(s): (113)

T (K93 Fapis[Da(s) = x()DE

and in the special (due to its simplicity) case of the expo-
nentially forgetting (RC, ) filter, as
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(114)

D = Klg - TAD(S) (Dq -x)]
T T(K ()3 Fais [Dyls) — X))

FIG. 40 shows a simplified diagram of the implementa-
tion of Eq. (113) in an analog device, with the adaptation
according to Eq. (111). Module I takes the outputs of
Modules 1T and III as inputs. The output of Module I is also
a feedback input of Module II. Module IV outputs AD(t),
which is used as one of the inputs of Module II (the width
parameter of the discriminator and the probe) for adaptation.

When Eq. (113) is used for the implementations of the
RC,, time window ARFs, the resulting algorithms do not
only allow easy analog implementation, but also offer sig-
nificant advantages in numerical computations. Since
numerical RC, -filtering requires only n+1 memory regis-
ters, an RC,;, moving window adaptive ARF for an arbitrary
associated signal K(t), regardless of the value of the time
constant T, requires remembering only 6n+4 data points, and
only 3n+1 without adaptation. An easy-to-evaluate threshold
test function can always be chosen, such as Cauchy. This
extremely low computational cost off AARFs allows their
usage (either in analog or digital implementations) in system
and apparatus with limited power supplies, such as on
spacecraft or in implanted medical devices.

FIG. 41 compares the quartile outputs (for q=0.25, 0.5,
and 0.75 quantiles) of the Cauchy test function RC,; AARF
for signal amplitudes with the corresponding conventional
square window digital order statistic filter. The outputs of the
AARF are shown by the thick black solid lines, and the
respective outputs of the square window order statistic filter
are shown by the thin black lines. The time constant of the
impulse response of the analog filter is T, and the corre-
sponding width of the rectangular window is 2aT, where a is
the solution of the equation a-In(1+a)=In(2). The incoming
signal is shown by the gray line, and the distance between
the time ticks is equal to 2aT.

20.1 Alternative Embodiment of AARFs

In some cases, after conducting the time averaging in the
equation for the AARF, Eq. (113), this expression loses the
explicit dependence on the quantile value g. This will always
be true, for example, for the case of a rectangular time
weighting function and a constant K. This difficulty can be
easily overcome by observing that

. h
Cx(Dgu 1) = lim (Ck(Dyg. Mt (115)

which leads to the approximate expression for the partial
time derivative of Cx(D,,1) as

1 (116)
9, Cx(Dg> D) » 12 [Ck Dy 1) - 4.
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Thus Eq. (113) can be written for this special case as

KO = (K(FapsDg ) = X))} (L

T AT(K(S) 8p Fapi [Dgln) = x50

where AT is small.
Note that a numerical algorithm resulting from rewriting
Eq. (106) as

- Ck(Dy D
9= T kg
AT{ck(Dgy )T

(118)

will essentially constitute the Newton-Raphson method of
finding the root of the function Ci(D,,t)-q=0 (Press et al.,
1992, for example).

FIG. 42 compares the quartile outputs (for q=0.25, 0.5,
and 0.75 quantiles) of the Cauchy test function square
window AARF for signal amplitudes with the corresponding
conventional square window digital order statistic filter. The
outputs of the AARF are shown by the black solid lines, and
the respective outputs of the square window order statistic
filter are shown by the dashed lines. The widths of the time
windows are T in all cases. The incoming signal is shown by
the gray line, and the distance between the time ticks is equal
to T.

The alternative embodiment of the AARF given by Eq.
(117) is especially useful when an AARF is replacing a
conventional square window digital order statistic filter, and
thus needs to replicate this filter’s performance. Another
way of emulating a digital rank order filter by a means of
analog rank selectors will be discussed later in the disclo-
sure.

21 Densities and Cumulative Distributions for
Ensembles of Variables

In various practical problems, it is often convenient to
express the measured variable as an ensemble of variables,
that is, as

119
X0 = f dunlpr (o), o

where n(y) du is the weight of the puth component of the
ensemble such that [_,“dun(u)=1. For such an entity, the
threshold averaged instantaneous density and cumulative
distribution can be written as

ad 120
BD: 1. () = f djun() foD - x,(0)], and (120

—ca

(121

B(D; 1, n(w) = f d () Fr[D - x, ()],

respectively. We will use these equations further to develop
practical embodiments of analog rank selectors.

Egs. (120) and (121) lead to the expressions for the
respective modulated density and cumulative distributions
as
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i e (Ku() fRID = x,()]) (122)
cg(Ds 1, n(p) = £m JW(M)W
and
(Ku()FRID = xu(5)D) 7 (123)

Cx(Dy 1, n(w) = f dun(w) o)
—o0 H T

The definitions of Eqgs. (122) and (123) will be used further
to develop the AARFs for ensembles of variables.

22 Analog Rank Selectors (ARSs)

Let us find a gth quantile of an equally weighted discrete
set of numbers {x,}. Substitution of Egs. (122) and (123)

1 N
with n() = NZ S(u— i)
i=1

into Eq. (22) leads to the embodiment of an analog rank
selector as

4 Nq—ZTAD(Xq—Xi) (124)

4o T T (1-ge 150 Tap (5 —x1)’

FIG. 43 illustrates finding a rank of a discrete set of numbers
according to Eq. (124). Five numbers X, are indicated by the
dots on the X-axis of the top panel. The solid line shows the
density resulting from the threshold averaging with a Gaus-
sian test function, and the dashed lines indicate the contri-
butions into this density by the individual numbers. The
solid line in the middle panel plots the cumulative distribu-
tion. The crosses indicate x,(c) and F,p[x ()] at the
successive integer values of the parameter c.. The bottom
panel plots the evolution of the value of x (c) in relation to
the values of x,.

If we allow the variables to depend on time, {a,}={x 1)},
then a convenient choice for the parameter is the time itself,
and we can use Egs. (19) through (21) to develop (instan-
taneous) analog rank selectors. Setting

grlx. 0= f " dagplt - )bl @ () = (bx: @m0

we can rewrite Eq. (21) as

41
fm dedigr(® 0 (pix s n)t
el @0 T (bl o, n(@)d

Xg=—
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For example, choosing ®,(t-a) in Eq. (125) as

[ = azn
priz—a) = e T 0-a) = hli-a)

leads to the relation

e*MT

. (128)
T f dae® b(x; o, n(w))

limgr(x, )= lim

= b(x; 1, n(u).

Then the equation for a discrete ensemble analog rank
selector reads as follows:

q- Z mFaplxg(t) — x;(0)] (129)

_ T

q
f dae®™ ¥n;0p Faplxg(@) — xi(@)]

i

- ) mFapli® - x0]

T<Z m0p Faplxg(s) — x; (S)]>

hgy?
T

where T is assumed to be small. For digitally sampled data,
T should be several times the sampling interval At. FIG. 44
provides a simple example of performance of an analog rank
selector for an ensemble of variables. In Panel 1, the solid
line shows the 3rd octile of a set of four variables (x,(t)
through x,(t), dashed lines), computed according to Eq.
(129). In Panel II, the solid line shows the median (q=Y2 in
Eq. (129)) of the ensemble. The thick dashed line plots the
median digitally computed at each sampling time. The time
constant of the analog rank selector is ten times the sampling
interval.

Obviously, when {x,(t)}={x(t-iAt)} and n=1/N, Eq.
(129) emulates an N-point square window digital order
statistic filter. Emulation of digital order statistic filters with
arbitrary window is done by replacing the (uniform) weights
1/N by n;, 2n,=1. An expert in the art will recognize that any
digital rank filter in any finite or infinite time window can be
emulated through this technique. FIG. 45 compares quartile
outputs (for g=0.25, 0.5, and 0.75 quantiles) of a square
window digital order statistic filter (dashed lines) with its
emulation by the Cauchy test function ARS (solid black
lines). The incoming signal is shown by the gray line, and
the distance between the time ticks is equal to the width of
the time window T.

FIG. 46 shows a simplified schematic of a device (accord-
ing to Eq. (129)) for analog rank selector for three input
variables.

23 Adaptive Analog Rank Filters for Ensembles of
Variables

The equation for AARFs, Eq. (113), can be easily- rewrit-
ten for an ensemble of variables. In particular, for a discrete
ensemble we have
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b _ AEKD} ~ B Tan Dg(s) = )y (130)

7 (%in; K(5)0p Fapis)[Dg () — x:(s)DE

For a continuous ensemble, the summation X, is simply
replaced by the respective integration.

FIG. 47 provides an example of performance of AARFs
for ensembles of variables. This figure also illustrates the
fact that counting densities do not only reveal different
features of the signal than do the amplitude densities, but
also respond to different changes in the signal. The figure
shows the outputs of median AARFs for an ensemble of
three variables. The input variables are shown by the gray
lines. The thicker black lines in Panels I and II show the
outputs of the median AARFs for amplitudes, and the
thinner black lines in both panels show the outputs of the
median AARFs for counting densities. All AARFs employ
Cauchy test function and RC, , time averaging. The distance
between the time ticks in both panels is equal to the time
constant of the time filters.

24 Modulated Threshold Densities for Scalar Fields

In treatment of the variables which depend, in addition to
time, on the spatial coordinates a, the threshold and the time
averages need to be complemented by the spatial averaging.
For example, the modulated threshold density of a variable
representing a scalar field, x=x(a,t), can be written as

(K(r, Y3pFanlD - 2(r, sk (13D

(K, sk

cx(D;ya, 1) =

Notice that the time and the spatial averaging obviously
commute, that is,

G X ORI X0 S G (132)
In the next section, we use Eq. (131) to present the analog
rank selectors and analog rank filters for scalar fields.
FIG. 48 shows a simplified diagram illustrating the trans-
formation of a scalar field into a modulated threshold density
according to Eq. (131). The sensor (probe) of the acquisition
system has the input-output characteristic d,F,,, of a dif-
ferential discriminator. The width of the probe is determined
(and may be controlled) by the width, or resolution, param-
eter AD. The displacement parameter of the probe D signi-
fies another variable serving as the unit, or datum. In FIG.
48, the input variable z(x,t) is a scalar field, or a component
of'an ensemble of scalar fields. For example, a monochrome
image can be viewed as a scalar field, and a truecolor image
can be viewed as a discrete ensemble of scalar fields. The
output of the probe then can be modulated by the variable
K(x,t), which can be of a different nature than the input
variable. For example, K(x,t)=constant will lead to the MTD
as an amplitude density, and K(x,t)=lz(x,t)l will lead to the
MTD as a counting density/rate. Both the modulating vari-
able K and its product with the output of the probe Ko, F, ,,
can then be averaged by a convolution with the time and
the space weighting functions h(t;T) and f(x;R). respec-
tively, leading to the averages <9, F AD[D—Z(r,t)]>T,,h’Jc
and <K(r,0)>7, <F. The result of a division of the latter
average by the former will be the modulated threshold

density c (D;x,t). Notice that all the steps of this transfor-
mation can be implemented by continuous action machines.
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25 Analog Rank Selectors and Analog Rank Filters
for Scalar Fields

For a scalar field (n-dimensional surface) z=z(x,t), where
X=(X,, . . . , X,,) is an n-dimensional vector, Eq. (129) can be
easily re-written as an RC,, analog rank selector/filter for a
scalar field

g —{(Faplzg(x, 0 — 20r, DY, (133)

4= >
T{OpFaplzg(x, ) - 2(r, HEY

where, as before (see Eq. (47)),

o =fmd”rfR(x—r)

o0

denotes the spatial averaging with some test function fz(x).
FIG. 49 shows a simplified schematic of a device accord-
ing to Eq. (133) for an analog rank filter of a discrete
monochrome surface with 3x3 spatial averaging.
The explicit expression for an ARF, Eq. (105), can be
easily re-written for scalar field variables as

Dja.n= [ dDexDia 00, FglCriDian-ql.

and the differential equation for an adaptive analog rank
filter for a scalar field will read as

Ak ) - (139

(K(r, )FanisDala, s) = x(r, s,
(K(r, $)3p Fapias[Dy(a: s) = x(r, 7%

Dya, 0=

where A is the width parameter of the spatial averaging filter.

25.1 Image Processing: ARSs and ARFs for
Two-Dimensional Digital Surfaces

The simple forward Euler method (Press et al., 1992,
Chapter 16, for example) is quite adequate for integration of
Eq. (133). Thus a numerical algorithm for analog rank
processing of a monochrome image given by the matrix
7=7,(t) can be written as

O =Q1+(g-F)fi (136)

F = wmFanlQe1 = Ziomjn)y_,]

N-1
N
g= Z WnnOp Fan Qi1 = Zimm jn)y_,

mn

fi=g+ St

where Q is the qth quantile of Z, and w,,, is some (two-
dimensional) smoothing filter, X, w,=1. Employing the
Cauchy test function, we can rewrite the algorithm of Eq.
(136) as
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O =Q1+(g-F)fi (137)

1 . 1 . Qi1 = Eimmjn)y_,
3 P Wparctan AD

mn

F=

N
fo=g+

-1

~f

1 Qi1 =~ Gimjn)
&= nADZ W’"”{l +[ AD ]

mn

FIG. 50 provides a simple example of filtering out static
impulse noise from a monochrome image (a photograph of
Werner Heisenberg, 1927) according to the algorithm of Eq.
(137). Panel 1 shows the original image 7. Panel 2 shows the
image corrupted by a random unipolar impulse noise of high
magnitude. About 50% of the image is affected. Panel 3a
shows the initial condition for the filtered image is a plane
of constant magnitude. Panels 35 through 3g display the
snapshots of the filtered image Q (the first decile of the
corrupted one, g=%1o0) at steps n.

FIG. 51 illustrates filtering out time-varying impulse
noise from a monochrome image (a photograph of Jules
Henri Poincare) using the algorithm of Eq. (137). Panels 1a
through 1¢: Three consecutive frames of an image corrupted
by a random (bipolar) impulse noise of high magnitude.
About 40% of the image is affected. Panels 2a through 2¢:

The image filtered through a smoothing filter, <{Z), =
Zm W piLei e Panels 3a through 3c: The rank filtered

image Q (the median, q=Y2). The smoothing filter in Eq.
(137) is the same used in Panels 2a through 2c.

26 Modulated Threshold Densities for Vector Field
and Ensemble of Vector Fields

The equation for the modulated threshold density of a
scalar field, Eq. (131), can be easily extended for a vector
field as

(K(r. $)fz[D - x(r, D, (138)

(K(r, s,

cx(Dsa, 1) =

where A is the width parameter of the spatial averaging filter,
and for an ensemble of vector fields as

(Kyu(r, )fRID = x(r, SRS (139)

(Ky(r, s,

cx(D;a, 1, n(p) = f dun(u)

—ca

FIG. 52 shows a simplified diagram illustrating the trans-
formation of a vector field into a modulated threshold
density according to Eq. (139). The sensor (probe) of the
acquisition system has the input-output characteristic fR of
a differential discriminator. The width of this characteristic
is determined (and may be controlled) by the width, or
resolution, parameter R ,. The threshold parameter of the
probe D signifies another variable serving as the unit, or
datum. In FIG. 52, the input variable x,(a,t) is a component
of an ensemble of a vector field. For example, a truecolor
image can be viewed as a continuous 3D vector field (with
the 2D position vector a). The output of the probe then can
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be modulated by the variable K, (a,t), which can be of a
different nature than the input variable. For example, K, (a,
t)=constant will lead to the MTD as an amplitude density,
and K, (a,t)=I%,(a,t) will lead to the MTD as a counting
density/rate. Both the modulating variable K, and its prod-
uct with the output of the probe K f, can then be averaged
by a convolution with the time an}au the space weighting
functions h(t;T) and f (a;R), respectively, leading to the

averages <K, fz (D X, 7, ﬁh I and (K T ﬁh . The result of a
division of the latter average by the former will be the
modulated threshold density ¢ X, (Dsa,t). Notice that all the
steps of this transformation can be implemented by continu-
ous action machines.

27 Mean at Reference Threshold for Vector Field

The equation for the mean at reference threshold, Eq.
(53), can be easily extended for a vector field input variable
K(a,s) as

K RID =3y,
i ¢ S

(140)

<ﬁ Ki(r, $)0p, Fap; [D; = x;(r, S)]>

i=1 T,A

_ln_l dp; Fap; [Di = xi(r, 5)]
i )

T.A

where A is the width parameter of the spatial averaging filter.

28 Analog Filters for Quantile Density, Domain
and Volume (AQDEFs, AQDOFs, and AQVFs)

Notice that the quantile density, domain, and volume
(Egs. (24) and (25)) are defined for multivariate densities,
and thus they are equally applicable to the description of the
scalar variables and fields as well as to the ensembles of
vector fields. The quantile density f,(a,t) defined by Eq.
(24), and the quantile volume R (a,t) defined by Eq. (25), are
both good indicators of an overall (threshold) width of the
density fx(x;a,t). The analog filters for these quantities can
be developed as follows.

Let us denote, for notational convenience, the density
function fi(x:a,t) in Eq. (24) as z(x,t). Notice that

@ ), = f Y fran=1,

and thus Eq. (24) can be re-written in terms of a modulated
cumulative threshold distribution of a scalar field. namely as

(&lr, DFaplzg (O — 20r, 1Y, (141)

Colzg(@); a, 1] = Alli)rgo =T =
(lr, $)Faplz(0) - z(r Dl

(atr, NI

1-
ADﬁO
T-0

Keeping T and AD in Eq. (141) small, but finite, allows us
to write the equation for an Analog Quantile Density Filter
(AQDEF) as
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L 0G50, 1) (142)
L= clz4(0; a, 1]
< f @ 2(r, )11 - g - Faplz (0 - 20 s>1}>
_ —o T _
o0 h
< f @ atr.5) 9o Fanlzg0 - 2.5
—c0 T
i 10

< f & 2(r, $)11 - g = Faplz(s) - 200, s>1}>

o T

h

< f & 2lr,9) 80 Fanlzg(s) = 0 9l

o0 T

For the exponentially forgetting (RC, ) time filter, h=h,, Eq.
(142) translates into

(143) 20

f & r2(r, 91— g - Faplzg(s) - 2(r. 91}

Zq([) === o ho "
q f ' atr.5) 30 Faolzy) - 20 9l
—c0 T

25
When the difference between the density function z(D,t) and

the quantile density z,(t) is the argument of a discriminator
FAp» the resulting quantity S (D;a,t).

S (Dia,0y=F apfz(D,1)z,(D)], (144)

30
can be called a quantile domain factor since the surface
S,(D;a,t)=V2 confines the regions of the threshold space
where z(D,)Zz, (). Thus Eq. (144) can be used as the
definition of an Analog Quantile Domain Filter (AQDOF).
Integrating over all threshold space, we arrive at the expres-
sion for an Analog Quantile Volume Filter (AQVF) as
follows:

35

(145) 49

Ry(a, 1) = f B d"rSy(r; a, 1) ={Sq(r; a, D).

FIG. 53 shows a diagram of a process for the transfor-
mation of the incoming vector field x(a,t) into a modulated
threshold density c.(D;a,t), and the subsequent evaluation of
the quantile density z,(t), quantile domain factor S (D;a,t),
and the quantile volume R (a,t) of this density.

FIGS. 544 and 545 show the median densities and vol-
umes computed for the amplitude and counting densities of
the two signals used in several previous examples (see, for
example, FIGS. (10) through (125), (14) through (17), (23),
and (27)). These figures compare the median densities and
volumes computed directly from the definitions (Eqgs. (24)
and (25), gray lines) with those computed through Egs.
(143) and (145) (black lines). Panels 1a, 24, 15, and 25 relate
to the amplitude densities, and Panels 3a, 4a, 35, and 4b
relate to the counting densities.

50
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o

29 Some Additional Examples of Performance of
ARSs and AARFs 60
29.1 Comparison of Outputs of RC,; AARFS for
Accelerations, Threshold Crossings, and
Amplitudes

65

FIG. 55 shows the quartile outputs (for =4 through ¥

quantiles) of the RC,, Cauchy test function AARFs for the

72

signal amplitudes (Panel I), threshold crossing rates (Panel
1I), and threshold crossing accelerations (Panel III). The
signal consists of three different stretches, 1 through 3,
corresponding to the signals shown in FIG. 9. In Panels I
through III, the signal is shown by the thin black solid lines,
the medians are shown by the thick black solid lines, and
other quartiles are shown by the gray lines. Panel IV plots
the differences between the third and the first quartiles of the
outputs of the filters. The incoming signal (Yo of the
amplitude) is shown at the bottom of this panel. The distance
between the time ticks is equal to the time constant of the
filters T.

29.2 Detection of Intermittency

FIG. 56 provides an example of usage of AARFs for
signal amplitudes and threshold crossings to detect intermit-
tency. Panel I illustrates that outputs of AARFs for signal
amplitudes and threshold crossing rates for a signal with
intermittency can be substantially different. The quartile
outputs (for g=0.25, 0.5, and 0.75 quantiles) of an AARF for
signal threshold crossing rates are shown by the solid black
lines, and the respective outputs of an AARF for signal
amplitudes, by dashed lines. Panel II shows the median
outputs of AARFs for threshold crossing rates (black solid
lines) and amplitudes (dashed lines), and Panel III plots the
difference between these outputs. In Panels I and I, the input
signal is shown by gray lines.

29.3 Removing Outliers (Filtering of Impulse
Noise)

One of the most appealing features of the rank filters is
their insensitivitv to outliers although the definition of
outliers is different for the accelerations, threshold crossings,
and amplitudes. For signal amplitudes, the insensitivity to
outliers means that sudden changes in the amplitudes of the
signal x(t), regardless of the magnitude of these changes, do
not significantly affect the output of the filter D, (t) unless
these changes persist for about the (1-q)th fraction of the
width of the moving window. The example in FIG. 57
illustrates such insensitivity of median amplitude AARFs
and ARSs to outliers. The original uncorrupted signal is
shown by the thick black line in the upper panel, and the
signal+noise total by a thinner line. In the middle panel, the
noisy signal is filtered through an RC, , Cauchy test function
median AARF (thick line), and an averaging RC, ,, filter with
the same time constant (thinner line). The distance between
the time ticks is equal to 10T, where T is the time constant
of'the filters. In the lower panel, the signal is filtered through
an ARS emulator of a 5-point digital median filter (thick
line), and a 5-point running mean filter (thinner line). The
distance between the time ticks is equal to 50 sampling
intervals.

Another example of insensitivity of the RC,, moving
window median filter of signal amplitudes to outlier noise is
given in FIG. 58. Outlier noise (Panel 1) is added to the
signal shown in Panel II. The total power of the noise is
more than 500 times larger than the power of the signal, but
the noise affects only ~25% of the data points. The peri-
odogram of the signal+noise total is shown in Panel III, and
the periodogram of the signal only is shown in Panel IV. The
composite signal is filtered through an ARS emulator of a
10-point digital median filter, and the periodogram of the
result is shown in Panel V.
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29.4 Comparison of Outputs of Digital Rank Order
Filters with Respective Outputs of AARFS, ARSS,
and ARFS Based on Ideal Measuring System

As an additional example of the particular advantage of
employing the “real” acquisition systems as opposed to the
“ideal” systems, let us compare the output of a digital
median filter with the respective outputs of AARF, ARS, and
the median filter based on an ideal measuring system.

29.4.1 Respective Numerical Algorithms

A formal equation for an analog rank filter based on an
ideal measuring system is obviously contained in the prior
art. For example, the equation for a square window rank
filter based on an ideal measuring system is derived as
follows. The time-averaged output of the ideal discriminator
is described by the function (Nikitin et al., 1998, p. 169, Eq.
(38), for example)

1 (146)
D, 0 = @D -y = 7 f ds0[D - x(s)],
T

2

which is formally a surface in a three-dimensional rectan-
gular coordinate system, whose points with the coordinates
t, D, and € satisty Eq. (146). Thus the output of a rank filter
for the qth quantile is the level line Q(D,t)=q of this surface.
Even though this surface is a discontinuous surface, it can be
formally differentiated with respect to threshold using the
relation dO(x)/dx=0(x) (see, for example, Eq. (4)). Substi-
tution of Eq. (146) into the equation for the level line, Eq.
(11), leads to the formal expression for the ideal rank filter
in a square window as

3D, _ 01D - x0] - 0D - x(t = T)]
ap D, 1) T{S[D - x(s)]r

Do = (147

which is practically useless since it does not contain q
explicitly. This difficulty can be easily overcome by setting

QD 0 = lim (OID = XDy = (01D = 2Dy (148)

which leads to the approximate expression for the partial
time derivative of Q(D,t) as

1 (149)
0, QUD, D) = T AOID —x(s)r — g)-

Since the denominator of Eq. (147) cannot be numerically

computed, we replace <8[D-x(s)]>, by its unimodal approxi-
mation, for example, by the approximation of Eq. (70). The
combination of this approximation with Eqs. (147) and
(149) leads to the numerical algorithm for the square win-
dow (amplitude) rank filter, based on the ideal measuring
system, which can read as follows:
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N-1 (150)
D D ! ! (D,
el = n+M_fnq_ﬁ; (Dn = Xn—i)
f 1{(M Dyt — [(Dn—mz}}
h = - n— —CXp(—
I BT BT
= ,
_ 1 2 =2
-l $e n
i=0
=
xn:ﬁ Xn—i
=0

where we set AT equal to MAt, At being the sampling
interval.

The respective numerical algorithms for the AARF and
ARS are based on the integration of Egs. (117) and (129),
respectively, by the forward Euler method (Press et al., 1992,
Chapter 16, for example).

29.4.2 Pileup Signal

As was discussed in Section 14 (see also the more detailed
discussion in Nikitin, 1998, for example), the unimodal
approximation of Eq. (70) should be adequate for a signal
with strong pileup effects. Thus one would expect that a rank
filter based on an ideal measuring system might be satisfac-
tory for such a signal. FIG. 59a compares the outputs of a
digital median filter with the respective outputs of an AARF
(Panel 1), an ARS (Panel II), and an ARF based on an ideal
measuring system (Panel III). In all panels, the pileup signal
is shown by the gray lines, the outputs of the digital median
filter are shown by the dashed black lines, and the respective
outputs of the analog median filters are shown by the solid
black lines. As can be seen from this figure, even though the
AAREF and the ARS outperform the median filter based on
an ideal measuring system, the performance of the latter
might still be considered satisfactory.

29.4.3 Asymmetric Square Wave Signal

For the amplitude density of the asymmetric square wave
signal, shown by the gray lines in FIG. 595, the unimodal
approximation of Eq. (70) is a poor approximation. As a
result, the median filter based on an ideal measuring system
(solid black line in Panel III) fails to adequately follow the
output of the digital median filter (dashed line in the same
panel). Panels I and II of FIG. 595 compare the outputs of
the digital median filter with the respective outputs of an
AAREF (Panel 1) and an ARS (Panel II). In all examples, AT
was chosen as T/10, where T is the width of the rectangular
window. This figure illustrates the advantage of employing
the “real” acquisition systems over the solutions based on
the “ideal” systems of the prior art.

29.4.4 Comparison of RC,, AARF with RC,, ARF
Based on Ideal Measuring System

Since conventional digital rank order filters employ rect-
angular time windows, it is difficult to directly compare the
outputs of such filters with the RC,, adaptive analog rank
filters. Panel I of FIG. 60 implements such comparison of the
quartile outputs of a digital square window rank filter
(dashed lines) with the respective outputs of the RC,, AARF
(solid black lines). Panel II of the same figure compares the
quartile outputs of the digital rank filter (dashed lines) with
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the respective outputs of the RC,, ARF, based on an ideal
measuring system (solid black lines). The time constants of
the analog filters were chosen as T/2 in both examples. The
incoming signal is shown by the gray lines. Since the
amplitude density of this signal is bimodal, the unimodal
approximation of Eq. (70) does not insure a meaningful
approximation of the respective digital rank filter by the
“ideal” ARF.

30 Summary of Main Transformations

30.1 Modulated Density and Cumulative
Distribution

FIG. 1a shows a simplified schematic of the basic AVA-
TAR system, summarizing various transformations of an
input variable into scalar field variables (e.g., into densities,
cumulative distributions, or counting rates), such as the
transformations described by Eqs. (52), (54), (55), (56),
(60), (61), (62), (64), (131), and (138) in this disclosure. This
system can be implemented through various physical means
such as electrical or electro-optical hardware devices, as
well as in computer codes (software). The detailed descrip-
tion of FIG. 14 is as follows:

The system shown in FIG. 1a is operable to transform an
input variable into an output variable having mathematical
properties of a scalar field of the Displacement Variable. A
Threshold Filter (a Discriminator or a Probe) is applied to a
difference of the Displacement Variable and the input vari-
able, producing the first scalar field of the Displacement
Variable. This first scalar field is then filtered with a first
Averaging Filter, producing the second scalar field of the
Displacement Variable. Without optional modulation, this
second scalar field is also the output variable of the system,
and has a physical meaning of either an Amplitude Density
(when the Threshold Filter is a Probe), or a Cumulative
Amplitude Distribution (when the Threshold Filter is a
Discriminator) of the input variable.

A Modulating Variable can be used to modify the system
in the following manner. First, the output of the Threshold
Filter (that is, the first scalar field) can be multiplied (modu-
lated) by the Modulating Variable, and thus the first Aver-
aging Filter is applied to the resulting modulated first scalar
field. For example, when the Threshold Filter is a Probe and
the Modulating Variable is a norm of the first time derivative
of the input variable, the output variable has an interpreta-
tion of a Counting (or Threshold Crossing) Rate. The
Modulating Variable can also be filtered with a second
Averaging Filter having the same impulse response as the
first Averaging Filter, and the output of the first Averaging
Filter (that is, the second scalar field) can be divided
(normalized) by the filtered Modulating Variable. The result-
ing output variable will then have a physical interpretation
of either a Modulated Threshold Density (when the Thresh-
old Filter is a Probe), or a Modulated Cumulative Threshold
Distribution (when the Threshold Filter is a Discriminator).
For example, when the Threshold Filter is a Probe and the
Modulating Variable is a norm of the first time derivative of
the input variable, the output variable will have an interpre-
tation of a Counting (or Threshold Crossing) Density.

30.2 Mean at Reference Threshold

FIG. 61 illustrates such embodiment of AVATAR as the
transformation of an input variable into a Mean at Reference
Threshold variable (see Egs. (53) and (140)). As has been
previously described in this disclosure, a comparison of the

20

25

30

35

40

45

50

55

60

65

76

Mean at Reference Threshold with the simple time (or
spatial) average will indicate the interdependence of the
input and the reference variables. This transformation can be
implemented by various physical means such as electrical or
electro-optical hardware devices, as well as in computer
codes (software). The detailed description of FIG. 61 is as
follows:

The system shown in the figure is operable to transform
an input variable into an output Mean at Reference Thresh-
old variable. A Probe is applied to the difference of the
Displacement Variable and the reference variable, producing
a first scalar field of the Displacement Variable. This first
scalar field is then modulated by the input variable, produc-
ing a modulated first scalar field of the Displacement Vari-
able. This modulated first scalar field is then filtered with a
first Averaging Filter, producing a second scalar field of the
Displacement Variable. The first scalar field is also filtered
with a second Averaging Filter having the same impulse
response as the first Averaging Filter, and the output of the
first Averaging Filter (that is, the second scalar field) is
divided by the filtered first scalar field. The resulting quo-
tient is the Mean at Reference Threshold variable.

30.3 Quantile Density, Quantile Domain Factor,
and Quantile Volume

Among various embodiments of AVATAR, the ability to
measure (or compute from digital data) (1) Quantile Density,
(2) Quantile Domain Factor, and (3) Quantile Volume for a
variable are of particular importance for analysis of vari-
ables. Quantile Density indicates the value of the density
likely to be exceeded, Quantile Domain contains the regions
of the highest density, and Quantile Volume gives the (total)
volume of the quantile domain. The definitions of these
quantities and a means of their implementation are unavail-
able in the existing art. FIG. 62 provides a simplified
schematic of transforming an input variable into output
Quantile Density, Quantile Domain Factor, and Quantile
Volume variables according to Eqgs. (142), (144), and (145).
Notice that these transformations can be implemented by
various physical means such as electrical or electro-optical
hardware devices, as well as in computer codes (software).
The detailed description of FIG. 62 is as follows:

The upper portion of FIG. 62 reproduces the system
shown in FIG. 1a where the threshold filter is a Probe. The
output of such system is either an Amplitude Density, or a
Modulated Threshold Density (MTD). This density can be
further transformed into Quantile Density, Quantile Domain
Factor, and Quantile Volume as described below.

A second Probe is applied to the difference between a
feedback of the Quantile Density variable and the Amplitude
Density/MTD, producing a first function of the Quantile
Density variable. This first function of Quantile Density is
then multiplied by the Amplitude Density/MTD, producing
a first modulated function of Quantile Density. The first
modulated function of Quantile Density is then filtered with
a first Time Averaging Filter producing a first time averaged
modulated function of Quantile Density, and integrated over
the values of the Displacement Variable producing a first
threshold integrated function of Quantile Density.

A first Discriminator, which is a respective discriminator
of'the second Probe, is applied to the difference between the
feedback of the Quantile Density variable and the Amplitude
Density/MTD, producing a second function of the Quantile
Density variable. A quantile value and the second function
of Quantile Density is then subtracted from a unity, and the
difference is multiplied by the Amplitude Density/MTD.
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This produces a second modulated function of Quantile
Density. This second modulated function of Quantile Den-
sity is then filtered with a second Time Averaging Filter
having the impulse response of the first derivative of the
impulse response of the first Time Averaging Filter. This
filtering produces a second time averaged modulated func-
tion of Quantile Density. This second time averaged modu-
lated function is then integrated over the values of the
Displacement Variable producing a second threshold inte-
grated function of Quantile Density. By dividing the second
threshold integrated function by the first threshold integrated
function and time-integrating the quotient, the system out-
puts the Quantile Density variable.

By applying a second Discriminator to the difference of
the Amplitude Density/MTD and the Quantile Density vari-
able, the latter variable is transformed into the Quantile
Domain Factor variable. By integrating the Quantile
Domain Factor over the values of the Displacement Vari-
able, the system outputs the Quantile Volume variable.

30.4 Rank Normalization

FIG. 63 provides a simplified schematic of such important
embodiment of AVATAR as Rank Normalization of an input
variable with respect to a cumulative distribution function
generated by a reference variable (see, for example, Eq.
(86)). The system shown in FIG. 63 can be implemented
through various physical means such as electrical or electro-
optical hardware devices, as well as in computer codes
(software). The detailed description of FIG. 63 is as follows:

A Discriminator is applied to the difference of the Dis-
placement Variable and the reference variable producing a
first scalar field of the Displacement Variable. This first
scalar field is then filtered with a first Averaging Filter,
producing a second scalar field of the Displacement Vari-
able. A Probe is applied to the difference of the Displace-
ment Variable and the input variable producing a third scalar
field of the Displacement Variable. This third scalar field is
multiplied by the second scalar field and the product is
integrated over the values of the Displacement Variable to
output the Rank Normalized variable.

A Modulating Variable can be used to modify the system
as follows. First, the output of the Discriminator (that is, the
first scalar field) is modulated by the Modulating Variable,
and thus the first Averaging Filter is applied to the resulting
modulated first scalar field. The Modulating Variable is also
filtered with a second Averaging Filter having the same
impulse response as the first Averaging Filter, and the output
of the first Averaging Filter (that is, the second scalar field)
is divided (normalized) by the filtered Modulating Variable.
The resulting Rank Normalized variable will then have a
physical interpretation of the input variable normalized with
respect to a MTD of the reference variable.

30.5 Explicit Analog Rank Filter

FIG. 64 shows a schematic of an explicit Analog Rank
Filter operable to transform an input scalar (or scalar field)
variable into an output Rank Filtered variable according to
Eq. (105) or Eq. (134). This filtering system can be imple-
mented by various physical means such as electrical or
electro-optical hardware devices, as well as in computer
codes (software). The detailed description of FIG. 64 is as
follows:

A first Probe is applied to the difference of the Displace-
ment Variable and the input variable producing a first scalar
function of the Displacement Variable. This first scalar
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function is then filtered by a first Averaging Filter producing
a first averaged scalar function of the Displacement Variable.
A Discriminator, which is a respective discriminator of the
first Probe, is applied to the difference of the Displacement
Variable and the input variable, producing a second scalar
function of the Displacement Variable. This second scalar
function is then filtered with a second Averaging Filter
having the same impulse response as the first Averaging
Filter, producing a second averaged scalar function of the
Displacement Variable.

A second Probe with a small width parameter is applied
to the difference of a quantile value and the second averaged
scalar function producing an output of the second Probe.
This output is multiplied by the first averaged scalar function
and by the Displacement Variable. This product is then
integrated over the values of the Displacement Variable
producing the output Rank Filtered variable.

The first scalar function and the second scalar function
can be also modulated by a Modulating Variable, and the
first averaged scalar function and the second averaged scalar
function can be divided by the Modulating Variable filtered
with a third Averaging Filter, which third Averaging Filter
has an impulse response identical to the impulse response of
the first and second Averaging Filters. Then the Rank
Filtered variable will correspond to a certain quantile of the
Modulated Cumulative Threshold Distribution of the input
variable.

30.6 Feedback Analog Rank Filter

FIG. 65 provides a simplified schematic of a feedback
Analog Rank Filter for a single scalar variable or a scalar
field variable, following the expressions of Egs. (113) and
(135). This filter can be embodied in various hardware
devices such as electrical or electro-optical, or in computer
codes (software). The detailed description of FIG. 65 is as
follows:

A Probe is applied to the difference between a feedback of
the Rank Filtered variable and the input variable producing
a first scalar function of the Rank Filtered variable. This first
scalar function is filtered with a first Time Averaging Filter
producing a first averaged scalar function of the Rank
Filtered variable. A Discriminator, which is a respective
discriminator of the Probe, is applied to the difference
between the feedback of the Rank Filtered variable and the
input variable producing a second scalar function of the
Rank Filtered variable. This second scalar function is sub-
tracted from a quantile value, and the difference is filtered
with a second Time Averaging Filter having the impulse
response of the first derivative of the impulse response of the
first Time Averaging Filter, producing a second averaged
scalar function of the Rank Filtered variable. The second
averaged scalar function is divided by the first averaged
scalar function, and the quotient is time-integrated to output
the Rank Filtered variable.

The first scalar function, and the difference between the
quantile value and the second scalar function, can also be
modulated by a Modulating Variable. Then the Rank Filtered
variable will correspond to a certain quantile of the Modu-
lated Cumulative Threshold Distribution of the input vari-
able.

The input variable can also be a scalar field variable. Then
averaging by Spatial Averaging Filters with identical
impulse responses may be added to the averaging by the first
and second Time Averaging Filters. These Spatial Averaging
Filters should be operable on the spatial coordinates of the
input variable. When modulation by a Modulating Variable
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is implemented in a system for rank filtering of a scalar field
variable, the Spatial Averaging Filters should be operable on
the spatial coordinates of the input variable and on the
spatial coordinates of the Modulating Variable.

30.7 Analog Rank Filter for Ensemble of Scalar
Variables

FIG. 66 provides a diagram of a feedback Analog Rank
Filter for a discrete ensemble or scalar variables, as
described by Eq. (130). This filter can be embodied in
various hardware devices such as electrical or electro-
optical, or in computer codes (software). The detailed
description of FIG. 66 is as follows:

A Probe is applied to each difference between a feedback
of the Rank Filtered variable and each component of the
ensemble of input variables, producing a first ensemble of
scalar functions of the Rank Filtered variable. Each com-
ponent of the first ensemble of scalar functions is multiplied
by the weight of the respective component of the ensemble
of input variables, and the products are added together
producing a first scalar function of the Rank Filtered vari-
able. This first scalar function is then filtered with a first
Time Averaging Filter, producing a first averaged scalar
function of the Rank Filtered variable.

A Discriminator, which is a respective discriminator of
the Probe, is applied to each difference between the feedback
of the Rank Filtered variable and each component of the
ensemble of input variables producing a second ensemble of
scalar functions of the Rank Filtered variable. Each differ-
ence between a quantile value and each component of the
second ensemble of scalar functions is multiplied by the
weight of the respective component of the ensemble of input
variables, and the products are summed, which produces a
second scalar function of the Rank Filtered variable. This
second scalar function is further filtered with a second Time
Averaging Filter having the impulse response of the first
derivative of the impulse response of the first Time Aver-
aging Filter, producing a second averaged scalar function of
the Rank Filtered variable. The second averaged scalar
function is then divided by the first averaged scalar function,
and the quotient is time-integrated to output the Rank
Filtered variable.

Optional modulation by an ensemble of Modulating Vari-
ables can be added to the system. Then the output of the
Probe (that is, the first ensemble of scalar functions) is
modulated by the ensemble of Modulating Variables (com-
ponent-by-component), and the difference between the
quantile value and the output of the Discriminator (that is,
the difference between the quantile value and the second
ensemble of scalar functions) is modulated by the ensemble
of Modulating Variables (component-by-component).
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Office upon request and payment of necessary fee.

FIG. 1a. Simplified schematic of basic system for analysis
of variables.

FIG. 15. Simplified schematic of basic elements of system
for analysis of variables. A scalar input variable x(t) (Panel
1) is transformed by a discriminator (Panel Ila) and by a
differential discriminator, or probe (Panel IIb), into continu-
ous functions of two variables, displacement (threshold) D
and time t, as shown in Panels IIla and IIIb.

FIG. 2. Input-output characteristics of some exemplary
discriminators and the respective probes (differential dis-
criminators).

FIG. 3. Illustration of the counting process for a continu-
ous signal. The upper part of the figure shows a computer
generated signal x(t) with crossings of the threshold D at
times t,. The Heaviside step function of the difference of the
signal x(t) and the threshold D is shown in the middle of the
figure. The differential of the function 8[x(t)-D] equals +1
at times t, and is shown at the bottom of the figure. Repro-
duced from (Nikitin, 1998).

FIG. 4. Introduction to Modulated Threshold Density.
Consider intersections of a scalar variable (signal) x(t) in the
interval [0,T] with the thresholds {D,}, where D, ,=D+AD.
The instances of these crossings are labeled as {t,}, t,,;>t..
The thresholds {D,} and the crossing times {t,} define a grid.
We shall name a rectangle of this grid with the lower left
coordinates (t,,D);) as a s,; box. We will now identify the time
interval At as t,,,-t; if the box s, covers the signal (as
shown), and zero otherwise.

FIG. 5. Example of using modulated densities for mea-
suring the input variable K in terms of the reference variable
x. Notice that the amplitude densities of the fragments of the
signals x,(t) and x,(t) shown in the left-hand panels are
identical. Notice also that the modulating signals K,(t),
K,(2), and K,(t) are identical for the respective modulated
densities of the signals %, (t) and x,(t), while the modulated
densities are clearly different. Thus even though the ampli-
tude densities and the modulating signals are identical.
different reference signals still result in different modulated
densities.

FIG. 6. Diagram illustrating an optical threshold smooth-
ing filter (probe).

FIG. 7. Diagram illustrating transformation of an input
variable into a modulated threshold density.

FIG. 8. RC,,, impulse response functions for n=0 (expo-
nential forgetting), n=1, and n=2.

FIG. 9a. Amplitude, counting, and acceleration densities
of a signal. The left column of the panels shows the
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fragments of three different signals in rectangular windows.
The second column of the panels shows the amplitude
densities, the third column shows the counting densities, and
the right column shows the acceleration densities for these
fragments. This figure illustrates that the acceleration and
counting densities generally reveal different features of the
signal than do the amplitude densities.

For the fragment x,(t) (the upper row of the panels),
X(t)=constant, and thus the counting and the amplitude
densities are identical. For the fragment x,(t) (the middle
row of the panels), X(t)l=constant, and thus the acceleration
and the amplitude densities are identical.

FIG. 95. Amplitude, counting, and acceleration densities
of a signal. The left column of the panels shows the
fragments of three different signals in rectangular windows.
The second column of the panels shows the amplitude
densities, the third column shows the counting densities, and
the right column shows the acceleration densities for these
fragments. This figure illustrates that the acceleration and
counting densities generally reveal different features of the
signal than do the amplitude densities.

FIG. 10. Example of time dependent acceleration densi-
ties, threshold crossing rates, and amplitude densities com-
puted in a 1-second rectangular moving window for two
computer generated non-stationary signals (Panels 1a and
15). Panels 2a and 26 show the acceleration densities, Panels
3a and 3b show the threshold crossing rates, and Panels 4a
and 4b show the amplitude densities.

FIG. 11. Illustration of applicability of quantile densities,
domains, and volumes to analysis of scalar variables.

FIG. 12a. Quantile densities, volumes, and domains dis-
played as time dependent quantities computed in a 1-second
rectangular sliding window for the signal shown in Panel 1a
of FIG. 10.

FIG. 12b. Quantile densities, volumes, and domains dis-
played as time dependent quantities computed in a 1-second
rectangular sliding window for the signal shown in Panel 14
of FIG. 10.

FIG. 13. Phase space densities of a signal. The first
column of the panels in the figure shows the fragments of
three different signals in rectangular windows. The second
column of the panels shows the phase space amplitude
densities, and the third column displays the phase space
counting densities.

FIG. 14. Example of time dependent phase space ampli-
tude densities computed according to Eq. (60) in a 1-second
rectangular moving window for two computer generated
non-stationary signals shown in Panels 14 and 16 of FIG. 10.
The figure plots the level lines of the phase space amplitude
densities (Panels 1a and 2a), at times indicated by the time
ticks. Panels 15 and 2b show the time slices of these
densities at time t=t,.

FIG. 15. Example of time dependent phase space counting
rates computed according to Eq. (62) in a 1-second rectan-
gular moving window for two computer generated non-
stationary signals shown in Panels 1a and 15 of FIG. 10. The
figure plots the level lines of the phase space counting rates
(Panels 1a and 2a), at times indicated by the time ticks.
Panels 15 and 25 show the time slices of these rates at time
t=t,.

FIG. 16. Boundaries of the median domains for the phase
space amplitude densities. The upper panel shows the
boundary for the signal of Panel 1a of FIG. 10, and the lower
panel shows the median domain boundary for the signal of
Panel 15 of FIG. 10.

FIG. 17. Boundaries of the median domains for the phase
space counting densities. The upper panel shows the bound-
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ary for the signal of Panel 1a of FIG. 10, and the lower panel
shows the median domain boundary for the signal of Panel
156 of FIG. 10.

FIG. 18. Schematic statement of the underlying motiva-
tion behind AVATAR.

FIG. 19. Simplified conceptual schematic of a possible
hardware device for displaying time dependent amplitude
densities of a scalar variable.

FIG. 20. Simplified conceptual schematic of a possible
hardware device for displaying time dependent threshold
crossing rates of a scalar variable.

FIG. 21. Illustration of possible hardware device for
displaying time slices of phase space amplitude densities.

FIG. 22. Illustration of possible hardware device for
displaying time slices of phase space counting rates.

FIG. 23. Bstimator & _(D,t) of Eq. (63) in g=%i0 quantile
domain, computed for the two computer generated nonsta-
tionary scalar signals shown in Panels 1a and 15. Panels 2a
and 2b display the values of the estimator for K=IxI, and
Panels 3a and 35 display these values for K=fkI.

FIG. 24. Illustration of adequacy of the approximation of
Eq. (73) when the signals x(t) and y(t) represent responses
of linear detector systems to trains of pulses with high
incoming rates, Poisson distributed in time.

FIG. 25. Illustration of the resulting density as a convo-
Iution of the component densities for uncorrelated signals.
The signals x, (1), x,(t), and x,(t)+x,(t) are shown in the left
column of the panels, and the respective panels in the right
column show the respective amplitude densities. The signal
X,(t) is random (non-Gaussian) noise. In the lower right
panel, the measured density of the combined signal is shown
by the solid line, and the density computed as the convolu-
tion of the densities b, (D) and b,(D) is shown by the dashed
line.

FIG. 26. The amplitude ®(D-x)>, and the counting

(<%1> )~ <%IS(D-x)>,. densities of the fragment of the signal
shown in the upper panel. One can see that the Gaussian
unimodal approximation (dashed lines) is more suitable for
the counting density than for the amplitude density.

FIG. 27. Example of the usage of the estimator given by
Eq. (92) for quantification of changes in a signal. The signals
are shown in Panels 1a and 15. The distributions C,(D,t) are
computed in a 1-second rectangular moving window as the
amplitude (for Panels 2a and 25) and counting (for Panels 3a
and 3b) cumulative distributions. Thus y,(t) are the outputs
of the respective rank filters for these distributions. The
estimators Q,,(t;q) are computed as the outputs of the
Gaussian normalizer of Eq. (83). The values of these outputs
for different quartile values are plotted by the gray (for
q="2), black (for q=4), and light gray (for q=34). In this
example, the estimator Q,,(t;q) quantifies the deviations of
C,(D,t) from the respective normal distributions.

FIG. 28. Example of usage of rank normalization for
discriminating between different pulse shapes of a variable.
Panel I shows the input signal consisting of three different
stretches, 1 through 3, corresponding to the variables shown
in FIG. 9. Panel II displays the difference between Cm,,h"(x,t)
and Cl,,h"(x,t), where the reference signal r is a Gaussian
process with the mean K, and the variance K,,-K, 2, and
K, are computed for the input signal x(t). This difference
is zero for the first stretch of the input signal, since for this
stretch the amplitude and the counting densities are identical
(see FIG. 9). Panel III displays the difference between
Cm,,h“(x,t) and Cl,,h"(x,t). This difference is zero for the
second stretch of the input signal, since for this stretch the
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amplitude and the acceleration densities are identical (see
FIG. 9). The distance between the time ticks is equal to the
constant T of the time filter.

FIG. 29. Additional example of sensitivity of the differ-
ence between two rank normalized signals to the nature of
the reference distributions. Panel I shows the input signal,
and Panel II displays the amplitude density computed in an
RC,, window with the time constant T, equal to the distance
between the time ticks. Panel I1I plots the difference between
Cm,,h"(x,t) and Cl,,h"(x,t), where the reference signal r is a
Gaussian process with the mean K,, and the variance
K,,-K,,?, computed for the input signal x(t).

FIG. 30. Simplified flowchart of an analog rank normal-
izer.

FIG. 31. Simplified flowchart of a device for comparison
of two signals by a means of rank normalization.

FIG. 32. Time averages of the absolute values of the

differences, <ICK,xh"(x,t)—C1,xh“(x,t)I>T, for K=IXI and K=I%l,
for the variable shown above the panel of the figure. The
distance between the time ticks is equal to the time constants
T of the filtering windows.

FIG. 33. Illustration of sensitivity of the amplitude and
counting phase space densities to differences in the signal’s
wave form. The panels in the left column show the sound
signals for several letters of the alphabet. The top signals in
the individual panels are the original input signals. The
normalized input signals and their normalized first deriva-
tives, respectively, are plotted below the original input
signals. The middle column of the panels shows the ampli-
tude, and the right column the counting densities of these
pairs of normalized signals.

FIG. 34. Panel I: The original speech signal “Phase
Space” is shown in the top of the panel. This signal is
normalized with respect to a Gaussian process with the mean
and variance of the original signal in a moving rectangular
window of 45 ms, and the result is plotted just below the
original signal. The bottom of the panel shows the time
derivative of the speech signal, normalized the same way.
Panel II: Time slices of the threshold density ¢(D,, D,t),
where x and y are the normalized original signal and its
normalized derivative, respectively, and c(D,, D,,t) is their
amplitude density in the time window 45 ms. The slices are
taken approximately through the middles of the phonemes.
Panel III: Time slices of the cumulative distribution ¢(D,,
D,.t), where x and y are the normalized original signal and
its normalized derivative, respectively, and c(D,, D,.0) is
their distribution in the time window 45 ms. The slices are
taken approximately through the middles of the phonemes.
Panel IV: The value of the estimator of a type of Eq. (94),
where the reference distribution is taken as the average
distribution computed in the neighborhood of the phonemes
“a”.

FIG. 35. Outline of an optical speech recognition device.

FIG. 36. Illustration of the relationship between the
outputs of a rank filter and the level lines of the amplitude
distribution of a scalar signal. Panel I shows the input signal
x(t) on the time-threshold plane. This signal can be viewed
as represented by its instantaneous density a d[D—-x(t)].
Threshold integration by the discriminator F, (D) trans-
forms this instantaneous density into the threshold averaged
distribution F,,, [D-x(t)] (Panel II). This distribution is
further averaged with respect to time, and the resulting
distribution B(D,t)=F ,,[D-x(s)]>; is shown in Panel III.
The quartile level lines are computed as the outputs of the
rank filter given by Eq. (105), and are plotted in the same
panel. Panel IV shows the input signal x(t), the level lines of

20

30

40

45

50

55

60

65

86

the amplitude distribution for q=Y4, ¥, and % (gray lines),
and the outputs of a digital rank order filter (black lines).

FIG. 37. Example of FIG. 36, repeated for the respective
analog and digital median filters for the discrete input
signals. The instantaneous density of a discrete signal can be
represented by 0[D-x(1)]Z,0(t—t,), as shown in Panel I. Panel
1I shows the threshold averaged distribution FD , ,[D-x(1)]
2.0(t-t,), and Panel III of the figure compares the level line
BD,)=F,p [D-x(5)]Z,0(s-t,)>;=Y2 (solid black line) with
the respective output of a digital median filter (white dots).

FIG. 38. Simplified schematic of a device for analog rank
filtering.

FIG. 39. Simplified schematic of a device for analog
rank filtering. Module 1 of the device outputs the

signal <K>Th[q—CKh(Dq,t)], and Module II estimates

K> le (D 2.o)- Lhe outputs of Modules I and II are divided
to form D, (t), which is integrated to produce the output of
the filter D_(t).

FIG. 40. Simplified schematic of the implementation of
Eq. (113) in an analog device with the adaptation according
to Eq. (111). Module I takes the outputs of Modules II and
1T as inputs. The output of Module I is also a feedback input
of Module II. Module IV outputs AD(t), which is used as one
of the inputs of Module II (the width parameter of the
discriminator and the probe) for adaptation.

FIG. 41. Comparison of the quartile outputs (for q=0.25,
0.5, and 0.75 quantiles) of the Cauchy test function RC,
AAREF for signal amplitudes with the corresponding con-
ventional square window digital order statistic filter. The
outputs of the AARF are shown by the thick black solid
lines, and the respective outputs of the square window order
statistic filter are shown by the thin black lines. The time
constant of the impulse response of the analog filter is T, and
the corresponding width of the rectangular window is 2aT,
where a is the solution of the equation a-In(1+a)=In(2). The
incoming signal is shown by the gray line, and the distance
between the time ticks is equal to 2aT.

FIG. 42. Comparison of the quartile outputs (for q=0.25,
0.5, and 0.75 quantiles) of the Cauchy test function square
window AARF for signal amplitudes with the corresponding
conventional square window digital order statistic filter. The
outputs of the AARF are shown by the black solid lines, and
the respective outputs of the square window order statistic
filter are shown by the dashed lines. The widths of the time
windows are T in all cases. The incoming signal is shown by
the gray line, and the distance between the time ticks is equal
to T.

FIG. 43. Finding a rank of a discrete set of numbers
according to Eq. (124). Five numbers X, are indicated by the
dots on the X-axis of the top panel. The solid line shows the
density resulting from the spatial averaging with a Gaussian
test function, and the dashed lines indicate the contributions
into this density by the individual numbers. The solid line in
the middle panel plots the cumulative distribution. The
crosses indicate x.(a) and Fp[x(a)] at the successive
integer values of the parameter a.. The bottom panel plots the
evolution of the value of X (c) in relation to the values of
X,
FIG. 44. Analog rank selection for an ensemble of vari-
ables. In Panel 1, the solid line shows the 3rd octile of a set
of four variables (x,(t) through X,(t), dashed lines), com-
puted according to Eq. (129). In Panel II, the solid line
shows the median (q=Y2 in Eq. (129)) of the ensemble. The
thick dashed line plots the median digitally computed at
each sampling time. The time constant of the analog rank
selector is ten times the sampling interval.
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FIG. 45. Comparison of the quartile outputs (for q=0.25,
0.5, and 0.75 quantiles) of a square window digital order
statistic filter (dashed lines) with its emulation be the
Cauchy test function ARS (solid black lines). The incoming
signal is shown by the gray line, and the distance between
the time ticks is equal to the width of the time window T.

FIG. 46. Simplified schematic of a device (according to
Eq. (129)) for analog rank selector for three input variables.

FIG. 47. Example of performance of AARFs for
ensembles of variables. This figure also illustrates the fact
that counting densities do not only reveal different features
of the signal than do the amplitude densities, but also
respond to different changes in the signal. The figure shows
the outputs of median AARFs for an ensemble of three
variables. The input variables are shown by the gray lines.
The thicker black lines in Panels I and II show the outputs
of the median AARFs for amplitudes, and the thinner black
lines in both panels show the outputs of the median AARFs
for counting densities. All AARFs employ Cauchy test
function and RC, , time averaging. The distance between the
time ticks in both panels is equal to the time constant of the
time filters.

FIG. 48. Diagram illustrating transformation of a scalar
field into a modulated threshold density.

FIG. 49. Simplified schematic of a device (according to
Eq. (133)) for analog rank filter of a discrete monochrome
surface with 3x3 spatial averaging.

FIG. 50. Filtering out static impulse noise from an image
according to the algorithm of Eq. (137). Panel 1: The
original image 7. Panel 2: The image corrupted by a random
unipolar impulse noise of high magnitude. About 50% of the
image is affected. Panel 3a: The initial condition for the
filtered image is a plane of constant magnitude. Panels 35
through 3g: The snapshots of the filtered image Q (the first
decile of the corrupted one, q=Y10) at steps n.

FIG. 51. Filtering out time-varying impulse noise accord-
ing to the algorithm of Eq. (137). Panels 1a through 1c:
Three consecutive frames of an image corrupted by a
random (bipolar) impulse noise of high magnitude. About
40% of the image is affected. Panels 2a through 2¢: The
image filtered through a smoothing filter. (Z), =%,,,W,,,
Z, s Panels 3a through 3c¢: The rank filtered image Q
(the median, qg=V%). The smoothing filter in Eq. (137) is the
same used in Panels 2a through 2c.

FIG. 52. Diagram illustrating transformation of a vector
field into a modulated threshold density.

FIG. 53. Diagram of a process for the transformation of
the incoming vector field x(a,t) into a modulated threshold
density cx{(D;at), and the subsequent evaluation of the
quantile density z(t), quantile domain factor S (D;a,t), and
the quantile volume R_(a,t) of this density.

FIG. 54a. Comparison of the median densities and vol-
umes computed directly from the definitions (Egs. (24) and
(25), gray lines) with those computed through Egs. (143)
and (145) (black lines). Panels 1a and 2a relate to the
amplitude densities, and Panels 3a and 4a relate to the
counting densities.

FIG. 54b. Comparison of the median densities and vol-
umes computed directly from the definitions (Egs. (24) and
(25), gray lines) with those computed through Egs. (143)
and (145) (black lines). Panels 15 and 26 relate to the
amplitude densities, and Panels 35 and 454 relate to the
counting densities.

FIG. 55. Quartile outputs (for qg=Y4 through %4 quantiles)
of the RC,, Cauchy test function AARFs for the signal
amplitudes (Panel I), threshold crossing rates (Panel II), and
threshold crossing accelerations (Panel I1I). The signal con-
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sists of three different stretches, 1 through 3, corresponding
to the signals shown in FIG. 9. In Panels I through III, the
signal is shown by the thin black solid lines, the medians are
shown by the thick black solid lines, and other quartiles are
shown by the gray lines. Panel IV plots the differences
between the third and the first quartiles of the outputs of the
filters. The incoming signal (V1o of the amplitude) is shown
at the bottom of this panel. The distance between the time
ticks is equal to the time constant of the filters T.

FIG. 56. Detection of intermittency. Panel I illustrates that
outputs of AARFs for signal amplitudes and threshold
crossing rates for a signal with intermittency can be sub-
stantially different. The quartile outputs (for g=0.25, 0.5, and
0.75 quantiles) of an AARF for signal threshold crossing
rates are shown by the solid black lines, and the respective
outputs of an AARF for signal amplitudes by dashed lines.
Panel II shows the median outputs of AARFs for threshold
crossing rates (black solid lines) and amplitudes (dashed
lines), and Panel III plots the difference between these
outputs. In Panels I and II, the input signal is shown by gray
lines.

FIG. 57. Insensitivity of median amplitude AARFs and
ARSs to outliers. The original uncorrupted signal is shown
by the thick black line in the upper panel, and the signal+
noise total by a thinner line. In the middle panel, the noisy
signal is filtered through an RC,, Cauchy test function
median AARF (thick line), and an averaging RC, ,, filter with
the same time constant (thinner line). The distance between
the time ticks is equal to 10T, where T is the time constant
of'the filters. In the lower panel, the signal is filtered through
an ARS emulator of a 5-point digital median filter (thick
line), and a 5-point running mean filter (thinner line). The
distance between the time ticks is equal to 50 sampling
intervals.

FIG. 58. Outlier noise (Panel I) is added to the signal
shown in Panel II. The total power of the noise is more than
500 times larger than the power of the signal, but the noise
affects only =25% of the data points. The periodogram of the
signal+noise total is shown in Panel 111, and the periodogram
of'the signal only is shown in Panel IV. The composite signal
is filtered through an ARS emulator of a 10-point digital
median filter, and the periodogram of the result is shown in
Panel V.

FIG. 59a. Comparison of the outputs of a digital median
filter (dashed lines) with the respective outputs of an AARF,
an ARS, and an ARFs based on an ideal measuring system
(solid lines), for a signal (gray lines) with strong pileup
effects.

FIG. 5956. Comparison of the outputs of a digital median
filter (dashed lines) with the respective outputs of an AARF,
an ARS, and an ARFs based on an ideal measuring system
(solid lines), for an asymmetric square wave signal (gray
lines).

FIG. 60. Comparison of the quartile outputs of a digital
square window rank filter (dashed lines in both panels) with
the respective outputs of the RC,, AARF (solid black lines
in Panel I), and with the quartile outputs of the RC,, ARF,
based on an ideal measuring system (solid black lines in
Panel II).

FIG. 61. Schematic of transforming an input variable into
an output Mean at Reference Threshold variable.

FIG. 62. Schematic of transforming an input variable into
output Quantile Density, Quantile Domain Factor, and
Quantile Volume variables.

FIG. 63. Schematic of Rank Normalization of an input
variable with respect to a reference variable.

FIG. 64. Schematic of an explicit Analog Rank Filter.
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FIG. 65. Schematic of an Analog Rank Filter for a single
scalar variable or a scalar field variable. -continued
FIG. 66. Schematic of an Analog Rank Filter for an TV %V _
ensemble of scalar variables. 5 < (D_X] * (D_X] 90, Fan, [Dx = X510, Fao, [D: _x(s)]>T
i 2 3 2
BEST MODES FOR CARRYING OUT THE < (D_X] +(D_X] >T
INVENTION
1 Main Equations for Practical Embodiments 1o (vii) Phase space counting rates, Eq. (62):
R(D, Dy ty=C(D 243D )20, Fap, [D,=(5)]
(1) Modulated threshold density, Eq. (52): P D557
1X) Estimator of differences 1n quantile domain between the
ix) Esti f diffe in quantile domain b h
15 mean at reference threshold and the time average, Eq.
(K(s) fr [D = x(s)D)r .
cx(D, 1) = W (63)~

HM K}y (D, 1) = (K)7l

(i1) Mean at reference threshold, Eq. (53): 2 Eg(D, D) = K] O fr(D = xN7 = fg@].
T
(ML K}(D, 1) = (K@) fr [D = x()]y (x) Modulated cumulative distribution, Eq. (64):
{fr [D = x5y
(ko [ 120, Fanos - o) » > (KPR~ x(s)])r
ot r e B
<l_[ dp, Fap, [Di - Xi(S)]>
= T 30 (xi) Rank normalization with respect to the reference dis-
tribution Cx(D,t), Eq. (86):
(iii) Amplitude density, Eq. (54): WO=F o D-xB)]C (D22
(xii) Rank normalization by a discriminator with an arbitrary
N input-output response, Eq. (88):
35
60,0 ={[ [ 0, Fin, 101 = 57 -
i=1 T
Y0 = Fryg [0 = 501 = | | Fav 0D ® - 5001
(iv) Counting density, Eq. (55): =
40
(xiii) Rank normalization of a scalar variable by a discrimi-
n o on nator with an arbitrary input-output response, Eq. (89):
Xi(s)
< Z [E] ]_1[ 3, Fan, [D; —x;<s)]>r
i=1 =
D, D) = 45 ~
< Zn: [@]2 > yo = 7:\/72(’(20”(%& [K10() — x(0)].
— AD; T
(xiv) Estimator of differences between two distributions, Eq.
92):
so (

(v) Counting rates, Eq. (56):

Qa5 @) = Cplyg (1), 7] }

n o Calys(D, 1] =¢
Xi(s)
&, 0= Z B [ [ 400,710 ~x0)) 55
o (xv) Statistic for comparison of two distributions, Eq. (95):

A=) _o"dxh(x)H[C(%,0),C(%,0),Co(%,0),05(%,1)].
(vi) Phase space amplitude density, Fq. (60): o (xvi) Statistic of Cramér-von Mises type, Eq. (97):

DDy, 0)=89p, Fap /D)3 Fap /De~i(s)P .

(vii) Phase space counting density, Eq. (61): N fmdca(x, I DIWECA 51— Co )] =

65 Sy 4 T Cat ) ~
r(Dy, Dg, 1) = =) Xy . X EES wlCax, DIW[C,(x, ) = Cplx, 1] =
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-continued

= foo d" xci(x, DW[C,(x, DIW[C,(x, 1) — Cp(x, D)].

(xvii) Probabilistic comparison of amplitudes, Eq. (102):

Rﬁnzhﬁmdwﬂt—ﬁcﬁ{ﬂ”,4:<Cﬁ{ﬂ2,4f{

0 q q T

(xviii) Analog rank filter, Eq. (105):

mm:jmdDumewwﬂan—ﬂ

~{Deg (D, 19, FaglCk (D, 1) = g])2.

(xix) Adaptive analog rank filter, Eq. (113):

b - K = (K($)Fa poDgls) = x(s)HE
(K(5)0p T pis)[Dgls) — x(s))k

(xx) Alternative embodiment of adaptive analog rank filter,
Eq. (117):

b - G(K ()7 — (K($)F4 po)[Dg (1) — x(s)])%
T AT(K()9p Fa pio Dy — x(s)D).

(xxi) Threshold averaged instantaneous density for a con-
tinuous ensemble of variables, Eq. (120):

b(D; 1, n(w) = f d () fr[D — xu(0)].

(xxii) Threshold averaged instantaneous cumulative distri-
bution for a continuous ensemble of variables, Eq. (121):

B(D; 1, ﬂ(#))=f d (W Fg[D - x,(1)].

—ca

(xxiii) Modulated density for a continuous ensemble of
variables. Eq. (122):

_ e (Ku(s)frID = x,(5))
cx(D; 1, n(p) = Im dﬂﬂ(M)W

(xxiv) Modulated cumulative distribution for a continuous
ensemble of variables. Eq. (123):

(Ku($)Fr[D = xu()])

Cx(D; 1, n(p) = ﬁ dun(y) (Ku(s)
o H T

—
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(xxv) Analog rank selector for a continuous ensemble, Eq.
(126):

xq(1)
f ded, gr(t, £)

&rlt, x4 (0]

_ (Bugloy %))}
(B, %))5

kg=-—

(xxvi) RC,, analog rank selector for a discrete ensemble. Eq.
(129):

q- Z mFaplxg(t) — x;(0)]

o 4T
X, =€

[ daems moy Faolsgr - e

—oa

=), nFanli(n - x (0]

1[5 nidp Fanls,(s) - 56))

hy "
T

(xxvii) Adaptive analog rank filter for a discrete ensemble of
variables, Eq. (130):

oYk (s)}h (Y mKio i st - (s)])h
b, = 7 T i T

h
(S K00 TanlD ) - x(5))
: T

(xxviii) Modulated threshold density for a scalar field, Eq.
(131):

(K(r, Y3p FanlD - 2(r, s YDk

cx(Dya, 1)=
. (K 50k

(xxix) RC,, analog rank selector/filter for a scalar field
(n-dimensional surface). Eq. (133):

s = g —(Faplzg(x. 0 = 2(r. D)L
T{OpFaplzg(x, ) - 2(r, HEY

(xxx) Analog rank filter for a scalar field, Eq. (134):
Dyfa. ) = f " DDk (D; @, 00 Fag C(D; 1) - g,

(xxxi) Adaptive analog rank filter for a scalar field, Eq.
(135):

K, VR = (K0 9T apian [ Dgla ) = x(r, sV,
(K(r, ) p FaniaslDy(a, $) = x(r, 7

Dyla, )=
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(xxxii) Numerical algorithm for analog rank processing of
an image given by the matrix Z=7,(t), Bq. (136):

Q= 1+@-F/f
F =" W FanlQi1 = (Ziomjon);_ ]

mn

N—lf
N It

g= Z Woun Op Fap Qi1 = Zicm j-n),_, ]

mn

fo=g+

(xxxiii) Modulated threshold density for a vector field, Eq.
(138):

— .f
ex(Dsa, 1) = (K(r, s) fr[D :(fr S)DT,A_
(K(r, $)ra

(xxx1v) Modulated threshold density for an ensemble of
vector fields, Eq. (139):

(Kulr, ) fRlD = x(r, D,
(Kylr, )y, '

ck(D;a, 1, n(p) = f d pn()

—ca

(xxxv) Mean at reference threshold for a vector field input
variable, Eq. (140):

(K(r. ) oD = x(r )75
(D —xr, )y

M Klr 4(Dsa, 1) =

<ﬁ Ki(r, s)dp, Fap,[Di — x;(r, S)]>

i=1 T.A

<ﬁ Ap, Fap,[Di — xi(r, 5)]>
i=i

T.A

(xxxvi) Analog quantile density filter, Eq. (142):

3, C.lzg0ral]

Lln == clzg(0); a, 1]

oo I
<f &1 2(r, 91 - g - Faplzg(0 —z(r-S)]}>

— T

< f &1 2(r, 5) 6p Faplzg) —z(r-S)]>

h
—o0 T

<f & 2(r, )11 - g = Faplzg(s) - 200, s)]}>

h
—o0 T

o0 h
([ a0 Talzyts) - 20051
T

—ca

(xxxvii) Analog quantile domain filter, Eq. (144):
SAD;a,0)=F spfz(D,)-z ()]

(xxxviil) Analog quantile volume filter, Eq. (145):

Ry(a, )= foo d"rSq(r; a, 1) = (Sq(r; a, t));.
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2 Articles of Manufacture

Various embodiments of AVATAR may include hardware,
firmware, and software embodiments, that is, may be wholly
constructed with hardware components, programmed into
firmware, or be implemented in the form of a computer
program code.
Still further, the invention disclosed herein may take the
form of an article of manufacture. For example, such an
article of manufacture can be a computer-usable medium
containing a computer-readable code which causes a com-
puter to execute the inventive method.
We claim:
1. A method for analysis of variables operable to trans-
form an input variable into an output variable comprising the
following steps:
(a) applying a Threshold Filter to a difference of a
Displacement Variable and an input variable producing
a first scalar field of said Displacement Variable; and

(b) filtering said first scalar field of step (a) with a first
Averaging Filter operable to perform a function
selected from the group consisting of time averaging
function, spatial averaging function, and time and spa-
tial averaging function to produce a second scalar field
of said Displacement Variable.

2. A method for analysis of variables operable to trans-
form an input variable into an output variable as recited in
claim 1 further comprising the step:

modulating said first scalar field of step (a) by a Modu-

lating Variable producing a modulated first scalar field
of said Displacement Variable.

3. A method for analysis of variables as recited in claim
2 wherein said Threshold Filter is a Probe and said Modu-
lating Variable is a norm of a first time derivative of the input
variable.

4. A method for analysis of variables as recited in claim
3 wherein the input variable further comprises a vector
combining the components of the input variable and first
time derivatives of said components of the input variable.

5. A method for analysis of variables as recited in claim
2 further comprising the step:

dividing said second scalar field of step (b) by said

Modulating Variable where said Modulating Variable
has been first filtered with a second Averaging Filter
operable to perform a function selected from the group
consisting of time averaging function, spatial averaging
function, and time and spatial averaging function.

6. A method for analysis of variables as recited in claim
5 wherein said Threshold Filter is a Probe and said Modu-
lating Variable is a norm of a first time derivative of the input
variable.

7. A method for analysis of variables as recited in claim
6 wherein the input variable further comprises a vector
combining the components of the input variable and first
time derivatives of said components of the input variable.

8. A method for analysis of variables as recited in claim
5 wherein said Threshold Filter is a Discriminator and said
Modulating Variable is a norm of a first time Derivative of
the input variable.

9. A method for analysis of variables as recited in claim
8 wherein the input variable further comprises a vector
combining the components of the input variable and first
time derivatives of said components of the input variable.

10. A method for analysis of variables as recited in claim
5 wherein said Threshold Filter is a first Probe and where
said second scalar field of step (b) is a Modulated Threshold
Density.
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11. A method for analysis of variables as recited in claim
10 wherein the input variable further comprises a vector
combining the components of the input variable and first
time derivatives of said components of the input variable.

12. A method for analysis of variables as recited in claim
10 further comprising the following steps:

(a) applying a second Probe to a difference between a
feedback of a Quantile Density variable and said
Modulated Threshold Density producing a first func-
tion of said Quantile Density variable;

(b) multiplying said first function of Quantile Density of
step (a) by said Modulated Threshold Density produc-
ing a first modulated function of Quantile Density;

(c) filtering said first modulated function of Quantile
Density of step (b) with a first Time Averaging Filter
producing a first time averaged modulated function of
Quantile Density;

(d) integrating said first time averaged modulated function
of step (c) over the values of said Displacement Vari-
able producing a first threshold integrated function of
Quantile Density;

(e) applying a first Discriminator to the difference
between the feedback of said Quantile Density variable
and said Modulated Threshold Density variable
wherein said first Discriminator is a respective dis-
criminator of said second Probe producing a second
function of said Quantile Density variable;

(f) subtracting a quantile value and said second function
of Quantile Density of step (g) from a unity and
multiplying the difference by said Modulated Thresh-
old Density producing a second modulated function of
Quantile Density;

(g) filtering said second modulated function of Quantile
Density of step (f) with a second Time Averaging Filter
wherein the impulse response of said second Time
Averaging Filter is a first derivative of the impulse
response of said first Time Averaging Filter producing
a second time averaged modulated function of Quantile
Density;

(h) integrating said second averaged modulated function
of step (g) over the values of said Displacement Vari-
able producing a second threshold integrated function
of Quantile Density; and

(1) dividing said second threshold integrated function of
step (h) by said first threshold integrated function of
step (d) and time-integrating the quotient to output said
Quantile Density variable.

13. A method for analysis of variables as recited in claim

12 further comprising the step:

applying a second Discriminator to the difference of said
Modulated Threshold Density and said Quantile Den-
sity variable to output a Quantile Domain Factor vari-
able.

14. A method for analysis of variables as recited in claim

13 further comprising the step:

integrating said Quantile Domain Factor variable over the
values of said Displacement Variable to output a Quan-
tile Volume variable.

15. A method for analysis of variables as recited in claim

5 wherein said Threshold Filter is a Discriminator.

16. A method for analysis of variables as recited in claim
15 wherein the input variable further comprises a vector
combining the components of the input variable and first
time derivatives of said components of the input variable.

17. A method for analysis of variables as recited in claim
1 wherein said Threshold Filter is a first Probe and where
said second scalar field of step (b) is an Amplitude Density.
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18. A method for analysis of variables as recited in claim
17 wherein the input variable further comprises a vector
combining the components of the input variable and first
time derivatives of said components of the input variable.

19. A method for analysis of variables as recited in claim
17 further comprising the following steps:

(a) applying a second Probe to a difference between a
feedback of a Quantile Density variable and said
Amplitude Density producing a first function of said
Quantile Density variable;

(b) multiplying said first function of Quantile Density of
step (a) by said Amplitude Density producing a first
modulated function of Quantile Density;

(c) filtering said first modulated function of Quantile
Density of step (b) with a first Time Averaging Filter
producing a first time averaged modulated function of
Quantile Density;

(d) integrating said first time averaged modulated function
of step (c) over the values of said Displacement Vari-
able producing a first threshold integrated function of
Quantile Density;

(e) applying a first Discriminator to the difference
between the feedback of said Quantile Density variable
and said Amplitude Density wherein said first Discrimi-
nator is a respective discriminator of said second Probe
producing a Second function of said Quantile Density
variable;

(®) subtracting a quantile value and said second function
of Quantile Density of step (e) from a unity and
multiplying the difference by said Amplitude Density
producing a second modulated function of Quantile
Density;

(g) filtering said second modulated function of Quantile
Density of step (f) with a second Time Averaging Filter
wherein the impulse response of said second Time
Averaging Filter is a first derivative of the impulse
response of said first Time Averaging Filter producing
a second time averaged modulated function of Quantile
Density;

(h) integrating said second time averaged modulated
function of step (g) over the values of said Displace-
ment Variable producing a second threshold integrated
function of Quantile Density; and

(1) dividing said second threshold integrated function of
step (h) by said first threshold integrated function of
step (d) and time-integrating the quotient to output said
Quantile Density variable.

20. A method for analysis of variables as recited in claim

19 further comprising the step:

applying a second Discriminator to the difference of said
Amplitude Density and said Quantile Density variable
to output a Quantile Domain Factor variable.

21. A method for analysis of variables as recited in claim

20 further comprising the step:

integrating said Quantile Domain Factor variable over the
values of said Displacement Variable to output a Quan-
tile Volume variable.

22. A method for analysis of variables as recited in claim

1 wherein said Threshold Filter is a Discriminator.

23. A method for analysis of variables as recited in claim
22 wherein the input variable further comprises a vector
combining the components of the input variable and first
time derivatives of said components of the input variable.

24. A method for Rank Normalization of an input variable
with respect to a reference variable comprising the following
steps:
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(a) applying a Discriminator to a difference of a Displace-
ment Variable and a reference variable producing a first
scalar field of said Displacement Variable;

(b) filtering said first scalar field of step (a) with a first
Averaging Filter operable to perform a function
selected from the group consisting of time averaging
function, spatial averaging function, and time and spa-
tial averaging function to produce a second scalar field
of said Displacement Variable;

(c) applying a Probe to a difference of said Displacement
Variable and an input variable producing a third scalar
field of said Displacement Variable; and

(d) multiplying said third scalar field of step (c) by said
second scalar field of step (b) and integrating the
product over the values of said Displacement Variable
to output a Rank Normalized variable.

25. A method for Rank Normalization of an input variable
with respect to a reference variable as recited in claim 24
wherein the reference variable is analogous to the input
variable.

26. A method for Rank Normalization of an input variable
with respect to a reference variable as recited in claim 24
further comprising the following steps:

(a) modulating said first scalar field of step (a) by a

Modulating Variable; and

(b) dividing said second scalar field variable of step (b) by
said Modulating Variable where said Modulating Vari-
able has been first filtered with a second Averaging
Filter operable to perform a function selected from the
group consisting of time averaging function, spatial
averaging function, and time and spatial averaging
function.

27. A method for Rank Normalization of an input variable
with respect to a reference variable as recited in claim 26
wherein the reference variable is analogous to the input
variable.

28. A method for analysis of variables operable to trans-
form an input variable into an output variable comprising the
following steps:

(a) applying a Probe to a difference of a Displacement
Variable and a reference variable producing a first
scalar field of said Displacement Variable;

(b) modulating said first scalar field of step (a) by an input
variable producing a modulated first scalar field of said
Displacement Variable;

(c) filtering said modulated first scalar field of step (b)
with a first Averaging Filter to produce a second scalar
field of said Displacement Variable where said first
Averaging Filter is operable to perform a function
selected from the group consisting of time averaging
function, spatial averaging function, and time and spa-
tial averaging function; and

(d) dividing said second scalar field of step (¢) by said first
scalar field of step (a) where said first scalar field has
been first filtered with a second Averaging Filter oper-
able to perform a function selected from the group
consisting of time averaging function, spatial averaging
function, and time and spatial averaging function pro-
ducing an output variable.

29. A method for analysis of variables operable to trans-
form an input variable into an output variable comprising the
following steps:

(a) applying a first Probe to a difference of a Displacement
Variable and an input variable producing a first scalar
function of said Displacement Variable;

(b) filtering said first scalar function of step (a) with a first
Averaging Filter operable to perform a function
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selected from the group consisting of time averaging
function, spatial averaging function, and time and spa-
tial averaging function to produce a first averaged
scalar function of said Displacement Variable;

(c) applying a Discriminator to the difference of said
Displacement Variable and the input variable wherein
said Discriminator is a respective discriminator of said
first Probe producing a second scalar function of said
Displacement Variable;

(d) filtering said second scalar function of step (c) with a
second Averaging Filter operable to perform a function
selected from the group consisting of time averaging
function, spatial averaging function, and time and spa-
tial averaging function producing a second averaged
scalar function of said Displacement Variable;

(e) applying a second Probe to a difference of a quantile
value and said second averaged scalar function of step
(d) wherein the width parameter of said second Probe
is substantially smaller than unity producing an output
of the second Probe; and

() multiplying said output of the second Probe of step (e)
by said first averaged scalar function of step (b) and by
said Displacement Variable and integrating the product
over the values of said Displacement Variable to pro-
duce an output variable.

30. A method for analysis of variables operable to trans-
form an input variable into an output variable as recited in
claim 29 wherein said first scalar function of step (a) and
said second scalar function of step (¢) are modulated by a
Modulating Variable further comprising the step:

dividing said first averaged scalar function of step (b) and
said second averaged scalar function of step (d) by said
Modulating Variable where said Modulating Variable
has been first filtered with a third Averaging Filter
operable to perform a function selected from the group
consisting of time averaging function, spatial averaging
function, and time and spatial averaging function.

31. A method for analysis of variables as recited in claim
30 wherein said Modulating Variable is an absolute value of
a first time derivative of the input Variable.

32. A method for analysis of variables operable to trans-
form an input scalar field variable into an output variable
comprising the following steps:

(a) applying a Probe to a difference between a feedback of
an output variable and an input variable producing a
first scalar function of said output variable;

(b) filtering said first scalar function of step (a) with a first
Averaging Filter operable to perform time and spatial
averaging of said first scalar function producing a first
averaged scalar function of said output variable;

(c) applying a Discriminator to the difference between the
feedback of said output variable and the input variable
wherein said Discriminator is a respective discrimina-
tor of said Probe producing a second scalar function of
said output variable;

(d) subtracting said second scalar function of step (¢) from
a quantile value and filtering the difference with a
second Averaging Filter wherein the impulse response
of said second Averaging Filter is a first time derivative
of the impulse response of said first Averaging Filter
producing a second averaged scalar function of said
output variable; and

(e) dividing said second averaged scalar function of step
(d) by said first averaged scalar function of step (b) and
time-integrating the quotient to output said output
variable.
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33. A method for analysis of variables as recited in claim
32 wherein the width parameter of said Discriminator and
the respective Probe is indicative of variability of said Rank
Filtered variable.

34. A method for analysis of variables operable to trans-
form an input scalar field variable into an output variable
comprising the following steps:

(a) applying a Probe to a difference between a feedback of
an output variable and an input variable producing a
first scalar function of said output variable where said
first scalar function is modulated by a Modulating
Variable;

(b) filtering said first scalar function of step (a) with a first
Averaging Filter operable to perform time and spatial
averaging of said first scalar function producing a first
averaged scalar function of said output variable;

(c) applying a Discriminator to the difference between the
feedback of said output variable and the input variable
wherein said Discriminator is a respective discrimina-
tor of said Probe producing a second scalar function of
said output variable;

(d) subtracting said second scalar function of step (c) from
a quantile value and filtering the difference with a
second Averaging Filter wherein said difference
between said quantile value and said second scalar
function is modulated by said Modulating Variable and
wherein the impulse response of said second Averaging
Filter is a first time derivative of the impulse response
of said first Averaging Filter producing a second aver-
aged scalar function of said output variable; and

(e) dividing said second averaged scalar function of step
(d) by said first averaged scalar function of step (b) and
time-integrating the quotient to output said output
variable.

35. A method for analysis of variables as recited in claim
34 wherein said Modulating Variable is an absolute value of
a first time derivative of the input variable.

36. A method for analysis of variables as recited in claim
35 wherein the width parameter of said Discriminator and
the respective Probe is indicative of variability of said Rank
Filtered variable.

37. A method for analysis of variables as recited in claim
34 wherein the width parameter of said Discriminator and
the respective Probe is indicative of variability of said Rank
Filtered variable.

38. A method for analysis of variables operable to trans-
form an input variable into an output variable comprising the
following steps:

(a) applying a Probe to a difference between a feedback of
an output variable and an input variable producing a
first scalar function of the output variable;

(b) filtering said first scalar function of step (a) with a
Time Averaging Filter having an exponentially forget-
ting impulse response and a first Spatial Averaging
Filter operable on the spatial coordinates of the input
variable producing a first averaged scalar function of
the output variable;

(c) applying a Discriminator to the difference between the
feedback of the output variable and the input variable
wherein said Discriminator is a respective discrimina-
tor of said Probe producing a second scalar function of
the output variable;

(d) filtering the difference between a quantile value and
said second scalar function of step (c) with a second
Spatial Averaging Filter operable on the spatial coor-
dinates of the input variable producing a second aver-
aged scalar function of the output variable; and
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(e) dividing said second averaged scalar function of step
(d) by said first averaged scalar function of step (b) and
by the time constant of the impulse response of said
Time Averaging Filter and time-integrating the quotient
to produce said output variable.

39. A method for image analysis operable to transform an
input image signal into an output signal comprising the
following steps:

(a) applying a Threshold Filter to a difference of a
Displacement Variable and an input image signal pro-
ducing a first scalar field of said Displacement Variable;
and

(b) filtering said first scalar field of step (a) with a first
Averaging Filter operable to perform a function
selected from the group consisting of time averaging
function, spatial averaging function, and time and spa-
tial averaging function to produce a second scalar field
of said Displacement Variable.

40. A method for image analysis operable to transform an
input image signal into an output signal as recited in claim
39 further comprising the step:

modulating said first scalar field of step (a) by a Modu-
lating Variable producing a modulated first scalar field
of said Displacement Variable.

41. A method for image analysis as recited in claim 40
wherein said Threshold Filter is a Probe and said Modulating
Variable is a norm of a first time derivative of the input
image signal.

42. A method for image analysis as recited in claim 41
wherein the input image signal further comprises a vector
combining the components of the input image signal and
first time derivatives of said components of the input image
signal.

43. A method for image analysis as recited in claim 40
further comprising the step:

dividing said second scalar field of step (b) by said
Modulating Variable where said Modulating Variable
has been first filtered with a second Averaging Filter
operable to perform a function selected from the group
consisting of time averaging function, spatial averaging
function, and time and spatial averaging function.

44. A method for image analysis as recited in claim 43
wherein said Threshold Filter is a Probe and said Modulating
Variable is a norm of a first time derivative of the input
image signal.

45. A method for image analysis as recited in claim 44
wherein the input image signal further comprises a vector
combining the components of the input image signal and
first time derivatives of said components of the input image
signal.

46. A method for image analysis as recited in claim 43
wherein said Threshold Filter is a Discriminator and said
Modulating Variable is a norm of a first time derivative of
the input image signal.

47. A method for image analysis as recited in claim 46
wherein the input image signal further comprises a vector
combining the components of the input image signal and
first time derivatives of said components of the input image
signal.

48. A method for image analysis as recited in claim 43
wherein said Threshold Filter is a Probe.

49. A method for image analysis as recited in claim 48
wherein the input image signal further comprises a vector
combining the components of the input image signal and
first time derivatives of said components of the input image
signal.
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50. A method for image analysis as recited in claim 43
wherein said Threshold Filter is a Discriminator.

51. A method for image analysis as recited in claim 50
wherein the input image signal further comprises a vector
combining the components of the input image signal and
first time derivatives of said components of the input image
signal.

52. A method for image analysis as recited in claim 39
wherein said Threshold Filter is a Probe.

53. A method for image analysis as recited in claim 52
wherein the input image signal further comprises a vector
combining the components of the input image signal and
first time derivatives of said components of the input image
signal.

54. A method for image analysis as recited in claim 39
wherein said Threshold Filter is a Discriminator.

55. A method for image analysis as recited in claim 54
wherein the input image signal further comprises a vector
combining the components of the input image signal and
first time derivatives of said components of the input image
signal.

56. An apparatus for analysis of variables operable to
transform an input variable into an output variable compris-
ing:

a Threshold Filter operable to apply a Threshold Filter to

a difference of a Displacement Variable and an input
variable producing a first scalar field of said Displace-
ment Variable; and

a first Averaging Filter operable to perform a function
selected from the group consisting of time averaging
function, spatial averaging function, and time and spa-
tial averaging function so as to filter said first scalar
field to produce a second scalar field of said Displace-
ment Variable.

57. An apparatus for analysis of variables operable to
transform an input variable into an output variable as recited
in claim 56 further comprising:

a modulator operable to modulate said first scalar field by

a Modulating Variable producing a modulated first
scalar field of said Displacement Variable.

58. An apparatus for analysis of variables as recited in
claim 57 wherein said Threshold Filter is a Probe and said
Modulating Variable is a norm of a first time derivative of
the input variable.

59. An apparatus for analysis of variables as recited in
claim 58 wherein the input variable further comprises a
vector combining the components of the input variable and
first time derivatives of said components of the input vari-
able.

60. An apparatus for analysis of variables as recited in
claim 57 further comprising:

a second Averaging Filter operable to alter said Modulat-
ing Variable with a second Averaging Filter to produce
an averaged Modulating Variable where said second
Averaging Filter is operable to perform a function
selected from the group consisting of time averaging
function, spatial averaging function, and time and spa-
tial averaging function; and

a divider operable to divide said second scalar field by
said averaged Modulating Variable.

61. An apparatus for analysis of variables as recited in
claim 60 wherein said Threshold Filter is a Probe and said
Modulating Variable is a norm of a first time derivative of
the input variable.

62. An apparatus for analysis of variables as recited in
claim 61 wherein the input variable further comprises a
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vector combining the components of the input variable and
first time derivatives of said components of the input vari-
able.

63. An apparatus for analysis of variables as recited in
claim 60 wherein said Threshold Filter is a Discriminator
and said Modulating Variable is a norm of a first time
derivative of the input variable.

64. An apparatus for analysis of variables as recited in
claim 63 wherein the input variable further comprises a
vector combining the components of the input variable and
first time derivatives of said components of the input vari-
able.

65. An apparatus for analysis of variables as recited in
claim 60 wherein said Threshold Filter is a Probe.

66. An apparatus for analysis of variables as recited in
claim 65 wherein the input variable further comprises a
vector combining the components of the input variable and
first time derivatives of said components of the input vari-
able.

67. An apparatus for analysis of variables as recited in
claim 60 wherein said Threshold Filter is a Discriminator.

68. An apparatus for analysis of variables as recited in
claim 67 wherein the input variable further comprises a
vector combining the components of the input variable and
first time derivatives of said components of the input vari-
able.

69. An apparatus for analysis of variables as recited in
claim 56 wherein said Threshold Filter is a Probe.

70. An apparatus for analysis of variables as recited in
claim 69 wherein the input variable further comprises a
vector combining the components of the input variable and
first time derivatives of said components of the input vari-
able.

71. An apparatus for analysis of variables as recited in
claim 56 wherein said Threshold Filter is a Discriminator.

72. An apparatus for analysis of variables as recited in
claim 71 wherein the input variable further comprises a
vector combining the components of the input variable and
first time derivatives of said components of the input vari-
able.

73. An apparatus for Rank Normalization of an input
variable with respect to a reference variable comprising:

a Discriminator operable to apply a Discriminator to a
difference of a Displacement Variable and a reference
variable producing a first scalar field of said Displace-
ment Variable;

a first Averaging Filter operable to perform a function
selected from the group consisting of time averaging
function, spatial averaging function, and time and spa-
tial averaging function so as to alter said first scalar
field to produce a second scalar field of said Displace-
ment Variable;

a Probe operable to apply a Probe to a difference of said
Displacement Variable and an input variable producing
a third scalar field of said Displacement Variable;

a multiplier operable to multiply said third scalar field by
said second scalar field to produce a product; and

an integrator operable to integrate said product over the
values of said Displacement Variable to output a Rank
Normalized variable.

74. An apparatus for Rank Normalization of an input
variable with respect to a reference variable as recited in
claim 73 wherein the reference variable is analogous to the
input variable.

75. An apparatus for Rank Normalization of an input
variable with respect to a reference variable as recited in
claim 73 further comprising:
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a modulator operable to modulate said first scalar field by
a Modulating Variable;

a second Averaging Filter operable to alter said Modulat-
ing Variable to produce an averaged Modulating Vari-
able where said second Averaging Filter is operable to
perform a function selected from the group consisting
of time averaging function, spatial averaging function,
and time and spatial averaging function; and

a divider operable to divide said second scalar field by
said averaged Modulating Variable.

76. An apparatus for Rank Normalization of an input
variable with respect to a reference variable as recited in
claim 75 wherein the reference variable is analogous to the
input variable.

77. An apparatus for analysis of variables operable to
transform an input variable into an output variable compris-
ing:

a Probe operable to apply a Probe to a difference of a
Displacement Variable and a reference variable pro-
ducing a first scalar field of said Displacement Variable;

a modulator operable to modulate said first scalar field by
an input variable producing a modulated first scalar
field of said Displacement Variable;

a first Averaging Filter operable to alter said modulated
first scalar field, said first Averaging Filter operable to
perform a function selected from the group consisting
of time averaging function, spatial averaging function,
and time and spatial averaging function so as to pro-
duce a second scalar field of said Displacement Vari-
able;

a second Averaging Filter operable to alter said first scalar
field, said second Averaging Filter operable to perform
a function selected from the group consisting of time
averaging function, spatial averaging function, and
time and spatial averaging function so as to produce an
averaged first scalar field; and

a divider operable to divide said second scalar field by
said averaged first scalar field.
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78. An apparatus for Rank Normalization of an input

variable with respect to a reference variable comprising:

(a) a component operable to determine a measure of
central tendency of an Amplitude Density of a refer-
ence variable;

(b) a component operable to determine a measure of
variability of said Amplitude Density of the reference
variable; and

(c) a Discriminator operable to apply a Discriminator to a
difference of said measure of central tendency and the
input variable wherein the width parameter of said
Discriminator is indicative of said measure of variabil-
ity.

79. An apparatus for Rank Normalization of an input

variable with respect to a reference variable as recited in
claim 78 wherein the reference variable is analogous to the
input variable.

80. An apparatus for Rank Normalization of an input

variable with respect to a reference variable comprising:

(a) a component operable to determine a measure of
central tendency of a Modulated Threshold Density of
a reference variable;

(b) a component operable to determine a measure of
variability of said Modulated Threshold Density of the
reference variable; and

(c) a Discriminator operable to apply a Discriminator to a
difference of said measure of central tendency and the
input variable wherein the width parameter of said
Discriminator is indicative of said measure of variabil-
ity.

81. An apparatus for Rank Normalization of an input

variable with respect to a reference variable as recited in

35 claim 80 wherein the reference variable is analogous to the

input variable.



